随机多边形和圆周率的最佳外推估计

Shasha Wang, Wen-Qing Xu, Jitao Liu
{"title":"随机多边形和圆周率的最佳外推估计","authors":"Shasha Wang, Wen-Qing Xu, Jitao Liu","doi":"10.19139/SOIC-2310-5070-1193","DOIUrl":null,"url":null,"abstract":"We construct optimal extrapolation estimates of π based on random polygons generated by n independent points uniformly distributed on a unit circle in R2. While the semiperimeters and areas of these random n-gons converge to π almost surely and are asymptotically normal as n → ∞, in this paper we develop various extrapolation processes to further accelerate such convergence. By simultaneously considering the random n-gons and suitably constructed random 2n-gons and then optimizing over functionals of the semiperimeters and areas of these random polygons, we derive several new estimates of π with faster convergence rates. These extrapolation improvements are also shown to be asymptotically normal as n → ∞.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"9 1","pages":"241-249"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Polygons and Optimal Extrapolation Estimates of pi\",\"authors\":\"Shasha Wang, Wen-Qing Xu, Jitao Liu\",\"doi\":\"10.19139/SOIC-2310-5070-1193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct optimal extrapolation estimates of π based on random polygons generated by n independent points uniformly distributed on a unit circle in R2. While the semiperimeters and areas of these random n-gons converge to π almost surely and are asymptotically normal as n → ∞, in this paper we develop various extrapolation processes to further accelerate such convergence. By simultaneously considering the random n-gons and suitably constructed random 2n-gons and then optimizing over functionals of the semiperimeters and areas of these random polygons, we derive several new estimates of π with faster convergence rates. These extrapolation improvements are also shown to be asymptotically normal as n → ∞.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"9 1\",\"pages\":\"241-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/SOIC-2310-5070-1193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于均匀分布在R2中单位圆上的n个独立点生成的随机多边形,构造了π的最优外推估计。由于这些随机n-gon的半周长和面积几乎肯定收敛于π,并且随着n→∞渐近正态化,本文发展了各种外推过程来进一步加速这种收敛。通过同时考虑随机n-多边形和适当构造的随机2n-多边形,然后对这些随机多边形的半周长和面积的泛函进行优化,我们得到了几个收敛速度更快的π的新估计。这些外推改进也被证明是渐近正态的n→∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Polygons and Optimal Extrapolation Estimates of pi
We construct optimal extrapolation estimates of π based on random polygons generated by n independent points uniformly distributed on a unit circle in R2. While the semiperimeters and areas of these random n-gons converge to π almost surely and are asymptotically normal as n → ∞, in this paper we develop various extrapolation processes to further accelerate such convergence. By simultaneously considering the random n-gons and suitably constructed random 2n-gons and then optimizing over functionals of the semiperimeters and areas of these random polygons, we derive several new estimates of π with faster convergence rates. These extrapolation improvements are also shown to be asymptotically normal as n → ∞.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信