{"title":"通过勒让德曲面的增广得到的轴","authors":"Dan Rutherford, Michael Sullivan","doi":"10.1007/s40062-021-00292-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given an augmentation for a Legendrian surface in a 1-jet space, <span>\\(\\Lambda \\subset J^1(M)\\)</span>, we explicitly construct an object, <span>\\(\\mathcal {F} \\in \\mathbf {Sh}^\\bullet _{\\Lambda }(M\\times \\mathbb {R}, \\mathbb {K})\\)</span>, of the (derived) category from Shende, Treumann and Zaslow (Invent Math <b>207</b>(3), 1031–1133 (2017)) of constructible sheaves on <span>\\(M\\times \\mathbb {R}\\)</span> with singular support determined by <span>\\(\\Lambda \\)</span>. In the construction, we introduce a simplicial Legendrian DGA (differential graded algebra) for Legendrian submanifolds in 1-jet spaces that, based on Rutherford and Sullivan (Cellular Legendrian contact homology for surfaces, Part I, arXiv:1608.02984.) Rutherford and Sullivan (Internat J Math 30(7):135, 2019) Rutherford and Sullivan (Internat J Math 30(7):111, 2019), is equivalent to the Legendrian contact homology DGA in the case of Legendrian surfaces. In addition, we extend the approach of Shende, Treumann and Zaslow (Invent Math <b>207</b>(3), 1031–1133 (2017)) for 1-dimensional Legendrian knots to obtain a combinatorial model for sheaves in <span>\\(\\mathbf {Sh}^\\bullet _{\\Lambda }(M\\times \\mathbb {R}, \\mathbb {K})\\)</span> in the 2-dimensional case.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"16 4","pages":"703 - 752"},"PeriodicalIF":0.5000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sheaves via augmentations of Legendrian surfaces\",\"authors\":\"Dan Rutherford, Michael Sullivan\",\"doi\":\"10.1007/s40062-021-00292-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given an augmentation for a Legendrian surface in a 1-jet space, <span>\\\\(\\\\Lambda \\\\subset J^1(M)\\\\)</span>, we explicitly construct an object, <span>\\\\(\\\\mathcal {F} \\\\in \\\\mathbf {Sh}^\\\\bullet _{\\\\Lambda }(M\\\\times \\\\mathbb {R}, \\\\mathbb {K})\\\\)</span>, of the (derived) category from Shende, Treumann and Zaslow (Invent Math <b>207</b>(3), 1031–1133 (2017)) of constructible sheaves on <span>\\\\(M\\\\times \\\\mathbb {R}\\\\)</span> with singular support determined by <span>\\\\(\\\\Lambda \\\\)</span>. In the construction, we introduce a simplicial Legendrian DGA (differential graded algebra) for Legendrian submanifolds in 1-jet spaces that, based on Rutherford and Sullivan (Cellular Legendrian contact homology for surfaces, Part I, arXiv:1608.02984.) Rutherford and Sullivan (Internat J Math 30(7):135, 2019) Rutherford and Sullivan (Internat J Math 30(7):111, 2019), is equivalent to the Legendrian contact homology DGA in the case of Legendrian surfaces. In addition, we extend the approach of Shende, Treumann and Zaslow (Invent Math <b>207</b>(3), 1031–1133 (2017)) for 1-dimensional Legendrian knots to obtain a combinatorial model for sheaves in <span>\\\\(\\\\mathbf {Sh}^\\\\bullet _{\\\\Lambda }(M\\\\times \\\\mathbb {R}, \\\\mathbb {K})\\\\)</span> in the 2-dimensional case.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"16 4\",\"pages\":\"703 - 752\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00292-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00292-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
给定1-射流空间中Legendrian曲面的增大,\(\Lambda \subset J^1(M)\),我们明确地构造了一个对象\(\mathcal {F} \in \mathbf {Sh}^\bullet _{\Lambda }(M\times \mathbb {R}, \mathbb {K})\),它属于(派生的)类别,来自Shende, Treumann和Zaslow (Invent Math 207(3), 1031-1133(2017)),在\(M\times \mathbb {R}\)上具有由\(\Lambda \)确定的奇异支撑的可构造轴。在构造中,我们引入了1-射流空间中Legendrian子流形的简单Legendrian DGA(微分梯度代数),该代数基于Rutherford和Sullivan (Cellular Legendrian contact homology for surfaces, Part I, arXiv:1608.02984)。Rutherford and Sullivan (Internat J Math 30(7): 11,2019),在Legendrian曲面的情况下等价于Legendrian接触同源DGA。此外,我们扩展了Shende, Treumann和Zaslow (Invent Math 207(3), 1031-1133(2017))的一维Legendrian结方法,以获得二维情况下\(\mathbf {Sh}^\bullet _{\Lambda }(M\times \mathbb {R}, \mathbb {K})\)中滑轮的组合模型。
Given an augmentation for a Legendrian surface in a 1-jet space, \(\Lambda \subset J^1(M)\), we explicitly construct an object, \(\mathcal {F} \in \mathbf {Sh}^\bullet _{\Lambda }(M\times \mathbb {R}, \mathbb {K})\), of the (derived) category from Shende, Treumann and Zaslow (Invent Math 207(3), 1031–1133 (2017)) of constructible sheaves on \(M\times \mathbb {R}\) with singular support determined by \(\Lambda \). In the construction, we introduce a simplicial Legendrian DGA (differential graded algebra) for Legendrian submanifolds in 1-jet spaces that, based on Rutherford and Sullivan (Cellular Legendrian contact homology for surfaces, Part I, arXiv:1608.02984.) Rutherford and Sullivan (Internat J Math 30(7):135, 2019) Rutherford and Sullivan (Internat J Math 30(7):111, 2019), is equivalent to the Legendrian contact homology DGA in the case of Legendrian surfaces. In addition, we extend the approach of Shende, Treumann and Zaslow (Invent Math 207(3), 1031–1133 (2017)) for 1-dimensional Legendrian knots to obtain a combinatorial model for sheaves in \(\mathbf {Sh}^\bullet _{\Lambda }(M\times \mathbb {R}, \mathbb {K})\) in the 2-dimensional case.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.