具有双环逆的单环3-色有向图

IF 0.7 4区 数学 Q2 Mathematics
D. Kalita, K. Sarma
{"title":"具有双环逆的单环3-色有向图","authors":"D. Kalita, K. Sarma","doi":"10.13001/ela.2022.7037","DOIUrl":null,"url":null,"abstract":"The class of unicyclic $3$-colored digraphs with the cycle weight $\\pm\\mathrm{i}$ and with a unique perfect matching, denoted by $\\mathcal{U}_g$, is considered in this article. Kalita \\& Sarma [On the inverse of unicyclic 3-coloured digraphs, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2021.1948956] introduced the notion of inverse of $3$-colored digraphs. They characterized the unicyclic $3$-colored digraphs in $\\mathcal{U}_g$ possessing unicyclic inverses. This article provides a complete characterization of the unicyclic $3$-colored digraphs in $\\mathcal{U}_g$ possessing bicyclic inverses.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unicyclic 3-colored digraphs with bicyclic inverses\",\"authors\":\"D. Kalita, K. Sarma\",\"doi\":\"10.13001/ela.2022.7037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class of unicyclic $3$-colored digraphs with the cycle weight $\\\\pm\\\\mathrm{i}$ and with a unique perfect matching, denoted by $\\\\mathcal{U}_g$, is considered in this article. Kalita \\\\& Sarma [On the inverse of unicyclic 3-coloured digraphs, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2021.1948956] introduced the notion of inverse of $3$-colored digraphs. They characterized the unicyclic $3$-colored digraphs in $\\\\mathcal{U}_g$ possessing unicyclic inverses. This article provides a complete characterization of the unicyclic $3$-colored digraphs in $\\\\mathcal{U}_g$ possessing bicyclic inverses.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

一类具有循环权$\pm\mathrm{i}$和唯一完全匹配的单循环$3$色有向图,用$\mathcal表示{U}_g$,在本文中被考虑。Kalita和Sarma[关于单环3-色有向图的逆,线性和多线性代数,DOI:10.1080/03081087.2021.1948956]引入了$3$色有向图逆的概念。他们在$\mathcal中刻画了单环$3$色有向图{U}_g$拥有单循环逆。本文提供了$\mathcal中单循环$3$色有向图的一个完整特征{U}_g$拥有双环逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unicyclic 3-colored digraphs with bicyclic inverses
The class of unicyclic $3$-colored digraphs with the cycle weight $\pm\mathrm{i}$ and with a unique perfect matching, denoted by $\mathcal{U}_g$, is considered in this article. Kalita \& Sarma [On the inverse of unicyclic 3-coloured digraphs, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2021.1948956] introduced the notion of inverse of $3$-colored digraphs. They characterized the unicyclic $3$-colored digraphs in $\mathcal{U}_g$ possessing unicyclic inverses. This article provides a complete characterization of the unicyclic $3$-colored digraphs in $\mathcal{U}_g$ possessing bicyclic inverses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信