基于深度学习的数学文档分类研究

Fatimah Alshamari, Abdou Youssef
{"title":"基于深度学习的数学文档分类研究","authors":"Fatimah Alshamari, Abdou Youssef","doi":"10.5121/csit.2020.101702","DOIUrl":null,"url":null,"abstract":"Document classification is a fundamental task for many applications, including document annotation, document understanding, and knowledge discovery. This is especially true in STEM fields where the growth rate of scientific publications is exponential, and where the need for document processing and understanding is essential to technological advancement. Classifying a new publication into a specific domain based on the content of the document is an expensive process in terms of cost and time. Therefore, there is a high demand for a reliable document classification system. In this paper, we focus on classification of mathematics documents, which consist of English text and mathematics formulas and symbols. The paper addresses two key questions. The first question is whether math-document classification performance is impacted by math expressions and symbols, either alone or in conjunction with the text contents of documents. Our investigations show that Text-Only embedding produces better classification results. The second question we address is the optimization of a deep learning (DL) model, the LSTM combined with one dimension CNN, for math document classification. We examine the model with several input representations, key design parameters and decision choices, and choices of the best input representation for math documents classification.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study into Math Document Classification using Deep Learning\",\"authors\":\"Fatimah Alshamari, Abdou Youssef\",\"doi\":\"10.5121/csit.2020.101702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document classification is a fundamental task for many applications, including document annotation, document understanding, and knowledge discovery. This is especially true in STEM fields where the growth rate of scientific publications is exponential, and where the need for document processing and understanding is essential to technological advancement. Classifying a new publication into a specific domain based on the content of the document is an expensive process in terms of cost and time. Therefore, there is a high demand for a reliable document classification system. In this paper, we focus on classification of mathematics documents, which consist of English text and mathematics formulas and symbols. The paper addresses two key questions. The first question is whether math-document classification performance is impacted by math expressions and symbols, either alone or in conjunction with the text contents of documents. Our investigations show that Text-Only embedding produces better classification results. The second question we address is the optimization of a deep learning (DL) model, the LSTM combined with one dimension CNN, for math document classification. We examine the model with several input representations, key design parameters and decision choices, and choices of the best input representation for math documents classification.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2020.101702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.101702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文档分类是许多应用程序的基本任务,包括文档注释、文档理解和知识发现。在STEM领域尤其如此,科学出版物的增长率呈指数级增长,对文档处理和理解的需求对技术进步至关重要。就成本和时间而言,根据文档内容将新出版物分类到特定领域是一个昂贵的过程。因此,对可靠的文档分类系统的需求很高。本文主要研究数学文献的分类,包括英文文本、数学公式和数学符号。该文件涉及两个关键问题。第一个问题是数学文档分类性能是否受到数学表达式和符号的影响,无论是单独影响还是与文档的文本内容结合影响。我们的研究表明,纯文本嵌入可以产生更好的分类结果。我们要解决的第二个问题是用于数学文档分类的深度学习(DL)模型(LSTM与一维CNN相结合)的优化。我们用几个输入表示、关键设计参数和决策选择以及数学文档分类的最佳输入表示的选择来检查模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study into Math Document Classification using Deep Learning
Document classification is a fundamental task for many applications, including document annotation, document understanding, and knowledge discovery. This is especially true in STEM fields where the growth rate of scientific publications is exponential, and where the need for document processing and understanding is essential to technological advancement. Classifying a new publication into a specific domain based on the content of the document is an expensive process in terms of cost and time. Therefore, there is a high demand for a reliable document classification system. In this paper, we focus on classification of mathematics documents, which consist of English text and mathematics formulas and symbols. The paper addresses two key questions. The first question is whether math-document classification performance is impacted by math expressions and symbols, either alone or in conjunction with the text contents of documents. Our investigations show that Text-Only embedding produces better classification results. The second question we address is the optimization of a deep learning (DL) model, the LSTM combined with one dimension CNN, for math document classification. We examine the model with several input representations, key design parameters and decision choices, and choices of the best input representation for math documents classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信