Thomas P. Shannon, Sam J. Ahler, A. Mathers, Carly D. Ziter, H. Dugan
{"title":"道路盐分对整个城市景观土壤电导率的影响","authors":"Thomas P. Shannon, Sam J. Ahler, A. Mathers, Carly D. Ziter, H. Dugan","doi":"10.1093/jue/juaa006","DOIUrl":null,"url":null,"abstract":"\n Road salt application is a necessary component of winter road maintenance but comes with an environmental cost. Salts are transported via stormwater drainage or overland and soil throughflow to surface waterbodies, where excess ions create unfavorable or even uninhabitable conditions for freshwater organisms. Soils may retain salts during the process of overland and subsurface flow, thus acting as reservoirs that slow the transport of salt into freshwaters. Understanding the capacity and consistency of anthropogenic salt storage in urban soils may allow us to discover when and where deicing salt applications are most harmful. This article investigates the degree to which soils across a heterogeneous urban landscape retain salts. We measured the electrical conductivity (EC) of soils in an urban setting. Land covers included forests, grasslands, open spaces, low- and medium-density developments and along roadsides. We found that across land-cover types, soil carbon and porosity were correlated to EC in late summer, which suggests that pore space is an important and long-lasting reservoir for salt. In addition, more developed areas, had higher mean soil EC and greater EC variability within and between sites, with 75% of overall variance occurring within individual sites. We hypothesize that this within-site heterogeneity is driven by anthropogenic modifications to salt inputs and soil characteristics. The high EC variance in highly developed urban soils is a previously undiscussed phenomenon and highlights the fine-scale complexity of heterogeneous urban landscapes and the need for high-resolution sampling to accurately characterize urban ecosystems.","PeriodicalId":37022,"journal":{"name":"Journal of Urban Ecology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jue/juaa006","citationCount":"7","resultStr":"{\"title\":\"Road salt impact on soil electrical conductivity across an urban landscape\",\"authors\":\"Thomas P. Shannon, Sam J. Ahler, A. Mathers, Carly D. Ziter, H. Dugan\",\"doi\":\"10.1093/jue/juaa006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Road salt application is a necessary component of winter road maintenance but comes with an environmental cost. Salts are transported via stormwater drainage or overland and soil throughflow to surface waterbodies, where excess ions create unfavorable or even uninhabitable conditions for freshwater organisms. Soils may retain salts during the process of overland and subsurface flow, thus acting as reservoirs that slow the transport of salt into freshwaters. Understanding the capacity and consistency of anthropogenic salt storage in urban soils may allow us to discover when and where deicing salt applications are most harmful. This article investigates the degree to which soils across a heterogeneous urban landscape retain salts. We measured the electrical conductivity (EC) of soils in an urban setting. Land covers included forests, grasslands, open spaces, low- and medium-density developments and along roadsides. We found that across land-cover types, soil carbon and porosity were correlated to EC in late summer, which suggests that pore space is an important and long-lasting reservoir for salt. In addition, more developed areas, had higher mean soil EC and greater EC variability within and between sites, with 75% of overall variance occurring within individual sites. We hypothesize that this within-site heterogeneity is driven by anthropogenic modifications to salt inputs and soil characteristics. The high EC variance in highly developed urban soils is a previously undiscussed phenomenon and highlights the fine-scale complexity of heterogeneous urban landscapes and the need for high-resolution sampling to accurately characterize urban ecosystems.\",\"PeriodicalId\":37022,\"journal\":{\"name\":\"Journal of Urban Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jue/juaa006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jue/juaa006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jue/juaa006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Road salt impact on soil electrical conductivity across an urban landscape
Road salt application is a necessary component of winter road maintenance but comes with an environmental cost. Salts are transported via stormwater drainage or overland and soil throughflow to surface waterbodies, where excess ions create unfavorable or even uninhabitable conditions for freshwater organisms. Soils may retain salts during the process of overland and subsurface flow, thus acting as reservoirs that slow the transport of salt into freshwaters. Understanding the capacity and consistency of anthropogenic salt storage in urban soils may allow us to discover when and where deicing salt applications are most harmful. This article investigates the degree to which soils across a heterogeneous urban landscape retain salts. We measured the electrical conductivity (EC) of soils in an urban setting. Land covers included forests, grasslands, open spaces, low- and medium-density developments and along roadsides. We found that across land-cover types, soil carbon and porosity were correlated to EC in late summer, which suggests that pore space is an important and long-lasting reservoir for salt. In addition, more developed areas, had higher mean soil EC and greater EC variability within and between sites, with 75% of overall variance occurring within individual sites. We hypothesize that this within-site heterogeneity is driven by anthropogenic modifications to salt inputs and soil characteristics. The high EC variance in highly developed urban soils is a previously undiscussed phenomenon and highlights the fine-scale complexity of heterogeneous urban landscapes and the need for high-resolution sampling to accurately characterize urban ecosystems.