随机波动率模型中障碍期权定价的时序蒙特卡罗方法

IF 0.6 Q4 STATISTICS & PROBABILITY
S. Cuomo, V. D. Somma, E. D. Lorenzo, G. Toraldo
{"title":"随机波动率模型中障碍期权定价的时序蒙特卡罗方法","authors":"S. Cuomo, V. D. Somma, E. D. Lorenzo, G. Toraldo","doi":"10.1285/I20705948V13N1P128","DOIUrl":null,"url":null,"abstract":"In this paper we propose a numerical scheme to estimate  the price of a barrier option in a general framework.  More precisely, we extend a classical Sequential  Monte Carlo approach, developed under the hypothesis  of deterministic volatility, to Stochastic Volatility models,  in order to improve the efficiency of Standard Monte Carlo techniques in the case of barrier options whose underlying approaches the barriers. The paper concludes with the  application of our procedure to two case studies in  a SABR model.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"128-145"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V13N1P128","citationCount":"2","resultStr":"{\"title\":\"A Sequential Monte Carlo Approach for the pricing of barrier option in a Stochastic Volatility Model\",\"authors\":\"S. Cuomo, V. D. Somma, E. D. Lorenzo, G. Toraldo\",\"doi\":\"10.1285/I20705948V13N1P128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a numerical scheme to estimate  the price of a barrier option in a general framework.  More precisely, we extend a classical Sequential  Monte Carlo approach, developed under the hypothesis  of deterministic volatility, to Stochastic Volatility models,  in order to improve the efficiency of Standard Monte Carlo techniques in the case of barrier options whose underlying approaches the barriers. The paper concludes with the  application of our procedure to two case studies in  a SABR model.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"128-145\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V13N1P128\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N1P128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在一般框架下估计障碍期权价格的数值格式。更准确地说,我们将在确定性波动率假设下开发的经典顺序蒙特卡罗方法扩展到随机波动率模型,以提高标准蒙特卡罗技术在其底层接近障碍的障碍期权情况下的效率。本文最后将我们的程序应用于SABR模型中的两个案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Monte Carlo Approach for the pricing of barrier option in a Stochastic Volatility Model
In this paper we propose a numerical scheme to estimate  the price of a barrier option in a general framework.  More precisely, we extend a classical Sequential  Monte Carlo approach, developed under the hypothesis  of deterministic volatility, to Stochastic Volatility models,  in order to improve the efficiency of Standard Monte Carlo techniques in the case of barrier options whose underlying approaches the barriers. The paper concludes with the  application of our procedure to two case studies in  a SABR model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信