{"title":"利用细菌视紫红质的基本性质记录、处理和存储光学信息的一些方面","authors":"Anna B. Druzhko","doi":"10.1016/j.jphotochemrev.2023.100620","DOIUrl":null,"url":null,"abstract":"<div><p>A review regarding the studies of light-sensitive systems based on bacteriorhodopsin is presented. Briefly given are modern ideas about bacteriorhodopsin and its molecular properties<span>, about the photocycle of its transformation. The possibilities and ways of bacteriorhodopsin modifications are shown, in particular, such as dehydration, modification using chemical additives<span>, changing the primary protein sequence by use of genetic mutants of bacteriorhodopsin, replacing the chromophore with its synthesized analogues. Such modifications can optimize the use of bacteriorhodopsin to create photosensitive recording media. Particular attention is paid to various areas of possible applications of light-sensitive materials of this type, in particular, polymer films based on bacteriorhodopsin and its derivatives, the so-called Biochrome films. The possibilities of using BR-based polymer films not only as a photochromic material for multiple recording, but also as a material for write-once recording and permanent memory (the so-called material for write-once recording of optical information) are also considered.</span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"56 ","pages":"Article 100620"},"PeriodicalIF":12.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some aspects of using the fundamental properties of bacteriorhodopsin for recording, processing, and storage of optical information\",\"authors\":\"Anna B. Druzhko\",\"doi\":\"10.1016/j.jphotochemrev.2023.100620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A review regarding the studies of light-sensitive systems based on bacteriorhodopsin is presented. Briefly given are modern ideas about bacteriorhodopsin and its molecular properties<span>, about the photocycle of its transformation. The possibilities and ways of bacteriorhodopsin modifications are shown, in particular, such as dehydration, modification using chemical additives<span>, changing the primary protein sequence by use of genetic mutants of bacteriorhodopsin, replacing the chromophore with its synthesized analogues. Such modifications can optimize the use of bacteriorhodopsin to create photosensitive recording media. Particular attention is paid to various areas of possible applications of light-sensitive materials of this type, in particular, polymer films based on bacteriorhodopsin and its derivatives, the so-called Biochrome films. The possibilities of using BR-based polymer films not only as a photochromic material for multiple recording, but also as a material for write-once recording and permanent memory (the so-called material for write-once recording of optical information) are also considered.</span></span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"56 \",\"pages\":\"Article 100620\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000515\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000515","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Some aspects of using the fundamental properties of bacteriorhodopsin for recording, processing, and storage of optical information
A review regarding the studies of light-sensitive systems based on bacteriorhodopsin is presented. Briefly given are modern ideas about bacteriorhodopsin and its molecular properties, about the photocycle of its transformation. The possibilities and ways of bacteriorhodopsin modifications are shown, in particular, such as dehydration, modification using chemical additives, changing the primary protein sequence by use of genetic mutants of bacteriorhodopsin, replacing the chromophore with its synthesized analogues. Such modifications can optimize the use of bacteriorhodopsin to create photosensitive recording media. Particular attention is paid to various areas of possible applications of light-sensitive materials of this type, in particular, polymer films based on bacteriorhodopsin and its derivatives, the so-called Biochrome films. The possibilities of using BR-based polymer films not only as a photochromic material for multiple recording, but also as a material for write-once recording and permanent memory (the so-called material for write-once recording of optical information) are also considered.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.