二进制的不可约性

IF 0.5 Q3 MATHEMATICS
Haohao Wang, Jerzy Wojdylo, Peter Oman
{"title":"二进制的不可约性","authors":"Haohao Wang, Jerzy Wojdylo, Peter Oman","doi":"10.24330/ieja.1260484","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the family of binomials $x_1^{a_1} \n\\cdots x_m^{a_m}-y_1^{b_1}\\cdots y_n^{b_n}$ with $\\gcd(a_1, \n\\ldots, a_m, b_1, \\ldots, b_n)=1$ is irreducible by identifying \nthe connection between the irreducibility of a binomial in \n${\\mathbb C}[x_1, \\ldots, x_m, y_1, \\ldots, y_n]$ and ${\\mathbb \nC}(x_2, \\ldots, x_m, y_1, \\ldots, y_n)[x_1]$. Then we show that \nthe necessary and sufficient conditions for the irreducibility of \nthis family of binomials is equivalent to the existence of a \nunimodular matrix $U_i$ with integer entries such that $(a_1, \n\\ldots, a_m, b_1, \\ldots, b_n)^T=U_i \\be_i$ for $i\\in \\{1, \\ldots, \nm+n\\}$, where $\\be_i$ is the standard basis vector.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducibility of Binomials\",\"authors\":\"Haohao Wang, Jerzy Wojdylo, Peter Oman\",\"doi\":\"10.24330/ieja.1260484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the family of binomials $x_1^{a_1} \\n\\\\cdots x_m^{a_m}-y_1^{b_1}\\\\cdots y_n^{b_n}$ with $\\\\gcd(a_1, \\n\\\\ldots, a_m, b_1, \\\\ldots, b_n)=1$ is irreducible by identifying \\nthe connection between the irreducibility of a binomial in \\n${\\\\mathbb C}[x_1, \\\\ldots, x_m, y_1, \\\\ldots, y_n]$ and ${\\\\mathbb \\nC}(x_2, \\\\ldots, x_m, y_1, \\\\ldots, y_n)[x_1]$. Then we show that \\nthe necessary and sufficient conditions for the irreducibility of \\nthis family of binomials is equivalent to the existence of a \\nunimodular matrix $U_i$ with integer entries such that $(a_1, \\n\\\\ldots, a_m, b_1, \\\\ldots, b_n)^T=U_i \\\\be_i$ for $i\\\\in \\\\{1, \\\\ldots, \\nm+n\\\\}$, where $\\\\be_i$ is the standard basis vector.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1260484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1260484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过识别${\mathbb C}[x_2, \ldots, x_m, y_1, \ldots, b_n)=1$和${\mathbb C}(x_2, \ldots, x_m, y_1, \ldots, y_n]$中二项式的不可约性之间的联系,证明了$\gcd(a_1, \ldots, a_m, b_1, \ldots, y_n) $中的二项式族$x_1^{a_1} \cdots x_m^{a_1} -y_1 \cdots y_n)[x_1]$是不可约的。然后证明了该二项式族的不可约性的充分必要条件等价于具有整数项的一元矩阵$U_i$的存在性,使得$(a_1, \ldots, a_m, b_1, \ldots, b_n)^T=U_i \be_i$对于$i\in \{1, \ldots, m+n\}$,其中$\be_i$是标准基向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducibility of Binomials
In this paper, we prove that the family of binomials $x_1^{a_1} \cdots x_m^{a_m}-y_1^{b_1}\cdots y_n^{b_n}$ with $\gcd(a_1, \ldots, a_m, b_1, \ldots, b_n)=1$ is irreducible by identifying the connection between the irreducibility of a binomial in ${\mathbb C}[x_1, \ldots, x_m, y_1, \ldots, y_n]$ and ${\mathbb C}(x_2, \ldots, x_m, y_1, \ldots, y_n)[x_1]$. Then we show that the necessary and sufficient conditions for the irreducibility of this family of binomials is equivalent to the existence of a unimodular matrix $U_i$ with integer entries such that $(a_1, \ldots, a_m, b_1, \ldots, b_n)^T=U_i \be_i$ for $i\in \{1, \ldots, m+n\}$, where $\be_i$ is the standard basis vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信