{"title":"一类复对称线性系统的不平衡修正欧拉外推厄米和斜厄米分裂方法","authors":"Xianwen Xie, Hou-biao Li","doi":"10.32513/tbilisi/1608606059","DOIUrl":null,"url":null,"abstract":"In this paper, a lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting (LME-HS) iteration method is introduced for solving the complex symmetric linear systems. Under a loose restriction on parameter $\\theta$, we demonstrate that LME-HS iteration method is convergent. Moreover, we present the optimal parameter ${\\theta}^{*}$ of the LME-HS method and discuss the spectral properties of corresponding preconditioned matrix. Finally, the numerical experiments are used to verify the effectiveness of the proposed method.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"13 1","pages":"211-221"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems\",\"authors\":\"Xianwen Xie, Hou-biao Li\",\"doi\":\"10.32513/tbilisi/1608606059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting (LME-HS) iteration method is introduced for solving the complex symmetric linear systems. Under a loose restriction on parameter $\\\\theta$, we demonstrate that LME-HS iteration method is convergent. Moreover, we present the optimal parameter ${\\\\theta}^{*}$ of the LME-HS method and discuss the spectral properties of corresponding preconditioned matrix. Finally, the numerical experiments are used to verify the effectiveness of the proposed method.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":\"13 1\",\"pages\":\"211-221\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tbilisi/1608606059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems
In this paper, a lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting (LME-HS) iteration method is introduced for solving the complex symmetric linear systems. Under a loose restriction on parameter $\theta$, we demonstrate that LME-HS iteration method is convergent. Moreover, we present the optimal parameter ${\theta}^{*}$ of the LME-HS method and discuss the spectral properties of corresponding preconditioned matrix. Finally, the numerical experiments are used to verify the effectiveness of the proposed method.