A. Fraix , O. Huttin , N. Pace , N. Girerd , L. Filippetti , E. Donal , O. Lairez , T. Damy , C. Selton-Suty
{"title":"基于超声心动图机器学习提高转甲状腺素型心脏淀粉样变性的检测:R3M算法","authors":"A. Fraix , O. Huttin , N. Pace , N. Girerd , L. Filippetti , E. Donal , O. Lairez , T. Damy , C. Selton-Suty","doi":"10.1016/j.acvdsp.2023.04.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span><span>Transthyretin </span>cardiac amyloidosis<span> (ATTR-CA) is an emerging cause of heart failure. The screening of ATTR-CA remains difficult since its echocardiographic features are analogous to those observed in patients with age- and hypertension-related </span></span>cardiac remodeling.</p></div><div><h3>Method</h3><p>We retrospectively included 264 patients (76<!--> <!-->±<!--> <!-->13 years old, 59% male) referred for suspected ATTR-CA. A supervised machine learning diagnosis algorithm differentiating patients with (<em>n</em> <!-->=<!--> <!-->112) and without (<em>n</em> <!-->=<!--> <!-->152) ATTR-CA was constructed based on echocardiographic data, and subsequently validated in an external multicenter cohort of 455 patients (76<!--> <!-->±<!--> <!-->13 years old, 61% male).</p></div><div><h3>Results</h3><p><span>Patients with ATTR-CA had a lower systolic function (LVEF 47.4</span> <!-->±<!--> <!-->11 vs. 54.3<!--> <!-->±<!--> <!-->12%, <em>P</em> <!--><<!--> <!-->0.001), left ventricular (LV) global longitudinal strain (GLS) (11.0<!--> <!-->±<!--> <!-->3.7 vs. 14.2<!--> <!-->±<!--> <!-->4.5%, <em>P</em> <!--><<!--> <!-->0.001) and more significant relative apical longitudinal sparing (RALS) (1.5<!--> <!-->±<!--> <!-->1.2 vs. 0.9<!--> <!-->±<!--> <!-->0.4, <em>P</em> <!--><<!--> <!-->0.001) compared to controls. Machine learning identified right ventricular free wall thickness (RVFWT), RALS, relative wall thickness (RWT), and LV mass index as key variables for identifying ATTR-CA (AUC 0.88 [0.84–0.92]; <em>P</em> <!--><<!--> <!-->0.001). The diagnostic value of this R3M (RVFWT, RALS, RWT and LV Mass index) algorithm was good in the validation multicenter cohort with an AUC of 0.79 [0.75–0.83] <em>P</em> <!--><<!--> <!-->0.001. The R3M algorithm further improved diagnostic accuracy over the IWT (Increased Wall Thickness) guidelines score (increase in C-index of 0.15 [0.10–0.21], <em>P</em> <!--><<!--> <!-->0.001).</p></div><div><h3>Conclusion</h3><p>The simple R3M algorithm based on echocardiographic data exploring RVFWT, apical sparing, and concentric hypertrophy displays good diagnostic accuracy for ATTR-CA and could represent an efficient screening tool (<span>Fig. 1</span>).</p></div>","PeriodicalId":8140,"journal":{"name":"Archives of Cardiovascular Diseases Supplements","volume":"15 3","pages":"Pages 248-249"},"PeriodicalIF":18.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Echocardiography machine learning based to improve detection of transthyretin cardiac amyloidosis: The R3M Algorithm\",\"authors\":\"A. Fraix , O. Huttin , N. Pace , N. Girerd , L. Filippetti , E. Donal , O. Lairez , T. Damy , C. Selton-Suty\",\"doi\":\"10.1016/j.acvdsp.2023.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p><span><span>Transthyretin </span>cardiac amyloidosis<span> (ATTR-CA) is an emerging cause of heart failure. The screening of ATTR-CA remains difficult since its echocardiographic features are analogous to those observed in patients with age- and hypertension-related </span></span>cardiac remodeling.</p></div><div><h3>Method</h3><p>We retrospectively included 264 patients (76<!--> <!-->±<!--> <!-->13 years old, 59% male) referred for suspected ATTR-CA. A supervised machine learning diagnosis algorithm differentiating patients with (<em>n</em> <!-->=<!--> <!-->112) and without (<em>n</em> <!-->=<!--> <!-->152) ATTR-CA was constructed based on echocardiographic data, and subsequently validated in an external multicenter cohort of 455 patients (76<!--> <!-->±<!--> <!-->13 years old, 61% male).</p></div><div><h3>Results</h3><p><span>Patients with ATTR-CA had a lower systolic function (LVEF 47.4</span> <!-->±<!--> <!-->11 vs. 54.3<!--> <!-->±<!--> <!-->12%, <em>P</em> <!--><<!--> <!-->0.001), left ventricular (LV) global longitudinal strain (GLS) (11.0<!--> <!-->±<!--> <!-->3.7 vs. 14.2<!--> <!-->±<!--> <!-->4.5%, <em>P</em> <!--><<!--> <!-->0.001) and more significant relative apical longitudinal sparing (RALS) (1.5<!--> <!-->±<!--> <!-->1.2 vs. 0.9<!--> <!-->±<!--> <!-->0.4, <em>P</em> <!--><<!--> <!-->0.001) compared to controls. Machine learning identified right ventricular free wall thickness (RVFWT), RALS, relative wall thickness (RWT), and LV mass index as key variables for identifying ATTR-CA (AUC 0.88 [0.84–0.92]; <em>P</em> <!--><<!--> <!-->0.001). The diagnostic value of this R3M (RVFWT, RALS, RWT and LV Mass index) algorithm was good in the validation multicenter cohort with an AUC of 0.79 [0.75–0.83] <em>P</em> <!--><<!--> <!-->0.001. The R3M algorithm further improved diagnostic accuracy over the IWT (Increased Wall Thickness) guidelines score (increase in C-index of 0.15 [0.10–0.21], <em>P</em> <!--><<!--> <!-->0.001).</p></div><div><h3>Conclusion</h3><p>The simple R3M algorithm based on echocardiographic data exploring RVFWT, apical sparing, and concentric hypertrophy displays good diagnostic accuracy for ATTR-CA and could represent an efficient screening tool (<span>Fig. 1</span>).</p></div>\",\"PeriodicalId\":8140,\"journal\":{\"name\":\"Archives of Cardiovascular Diseases Supplements\",\"volume\":\"15 3\",\"pages\":\"Pages 248-249\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Cardiovascular Diseases Supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878648023001519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Diseases Supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878648023001519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Echocardiography machine learning based to improve detection of transthyretin cardiac amyloidosis: The R3M Algorithm
Introduction
Transthyretin cardiac amyloidosis (ATTR-CA) is an emerging cause of heart failure. The screening of ATTR-CA remains difficult since its echocardiographic features are analogous to those observed in patients with age- and hypertension-related cardiac remodeling.
Method
We retrospectively included 264 patients (76 ± 13 years old, 59% male) referred for suspected ATTR-CA. A supervised machine learning diagnosis algorithm differentiating patients with (n = 112) and without (n = 152) ATTR-CA was constructed based on echocardiographic data, and subsequently validated in an external multicenter cohort of 455 patients (76 ± 13 years old, 61% male).
Results
Patients with ATTR-CA had a lower systolic function (LVEF 47.4 ± 11 vs. 54.3 ± 12%, P < 0.001), left ventricular (LV) global longitudinal strain (GLS) (11.0 ± 3.7 vs. 14.2 ± 4.5%, P < 0.001) and more significant relative apical longitudinal sparing (RALS) (1.5 ± 1.2 vs. 0.9 ± 0.4, P < 0.001) compared to controls. Machine learning identified right ventricular free wall thickness (RVFWT), RALS, relative wall thickness (RWT), and LV mass index as key variables for identifying ATTR-CA (AUC 0.88 [0.84–0.92]; P < 0.001). The diagnostic value of this R3M (RVFWT, RALS, RWT and LV Mass index) algorithm was good in the validation multicenter cohort with an AUC of 0.79 [0.75–0.83] P < 0.001. The R3M algorithm further improved diagnostic accuracy over the IWT (Increased Wall Thickness) guidelines score (increase in C-index of 0.15 [0.10–0.21], P < 0.001).
Conclusion
The simple R3M algorithm based on echocardiographic data exploring RVFWT, apical sparing, and concentric hypertrophy displays good diagnostic accuracy for ATTR-CA and could represent an efficient screening tool (Fig. 1).
期刊介绍:
Archives of Cardiovascular Diseases Supplements is the official journal of the French Society of Cardiology. The journal publishes original peer-reviewed clinical and research articles, epidemiological studies, new methodological clinical approaches, review articles, editorials, and Images in cardiovascular medicine. The topics covered include coronary artery and valve diseases, interventional and pediatric cardiology, cardiovascular surgery, cardiomyopathy and heart failure, arrhythmias and stimulation, cardiovascular imaging, vascular medicine and hypertension, epidemiology and risk factors, and large multicenter studies. Additionally, Archives of Cardiovascular Diseases also publishes abstracts of papers presented at the annual sessions of the Journées Européennes de la Société Française de Cardiologie and the guidelines edited by the French Society of Cardiology.