二维一般Roesser Lyapunov系统的稳定性

Q4 Mathematics
Mohammed Amine Ghezzar, D. Bouagada, K. Benyettou, M. Chadli, P. Van Dooren
{"title":"二维一般Roesser Lyapunov系统的稳定性","authors":"Mohammed Amine Ghezzar, D. Bouagada, K. Benyettou, M. Chadli, P. Van Dooren","doi":"10.24193/MATHCLUJ.2021.1.08","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of stability for general two-dimensional (2D) discrete-time and continuous-discrete time Lyapunov systems, where the linear matrix inequalities (LMI's) approach is applied to derive a new sufficient condition for the asymptotic stability.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":"63 (86) 1","pages":"85-97"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the stability of 2D general Roesser Lyapunov systems\",\"authors\":\"Mohammed Amine Ghezzar, D. Bouagada, K. Benyettou, M. Chadli, P. Van Dooren\",\"doi\":\"10.24193/MATHCLUJ.2021.1.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of stability for general two-dimensional (2D) discrete-time and continuous-discrete time Lyapunov systems, where the linear matrix inequalities (LMI's) approach is applied to derive a new sufficient condition for the asymptotic stability.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\"63 (86) 1\",\"pages\":\"85-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/MATHCLUJ.2021.1.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2021.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一般二维离散和连续离散李雅普诺夫系统的稳定性问题,利用线性矩阵不等式的方法导出了该系统渐近稳定的一个新的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of 2D general Roesser Lyapunov systems
This paper addresses the problem of stability for general two-dimensional (2D) discrete-time and continuous-discrete time Lyapunov systems, where the linear matrix inequalities (LMI's) approach is applied to derive a new sufficient condition for the asymptotic stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信