{"title":"限制对数exp解析幂函数","authors":"Andre Opris","doi":"10.4064/ap221218-2-6","DOIUrl":null,"url":null,"abstract":"A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \\mathbb{R} \\to \\mathbb{R}, x \\mapsto \\left\\{\\begin{array}{ll} x^r,&x>0, \\\\ 0,&\\textnormal{ else, } \\end{array}\\right.$$ for $r \\in \\mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\\mathbb{R}_{\\textnormal{an}}^{\\mathbb{R}}$-definable functions.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted log-exp-analytic power functions\",\"authors\":\"Andre Opris\",\"doi\":\"10.4064/ap221218-2-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \\\\mathbb{R} \\\\to \\\\mathbb{R}, x \\\\mapsto \\\\left\\\\{\\\\begin{array}{ll} x^r,&x>0, \\\\\\\\ 0,&\\\\textnormal{ else, } \\\\end{array}\\\\right.$$ for $r \\\\in \\\\mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\\\\mathbb{R}_{\\\\textnormal{an}}^{\\\\mathbb{R}}$-definable functions.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap221218-2-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap221218-2-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{\begin{array}{ll} x^r,&x>0, \\ 0,&\textnormal{ else, } \end{array}\right.$$ for $r \in \mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\mathbb{R}_{\textnormal{an}}^{\mathbb{R}}$-definable functions.
期刊介绍:
Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba.
The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.