限制对数exp解析幂函数

IF 0.7 4区 数学 Q2 MATHEMATICS
Andre Opris
{"title":"限制对数exp解析幂函数","authors":"Andre Opris","doi":"10.4064/ap221218-2-6","DOIUrl":null,"url":null,"abstract":"A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \\mathbb{R} \\to \\mathbb{R}, x \\mapsto \\left\\{\\begin{array}{ll} x^r,&x>0, \\\\ 0,&\\textnormal{ else, } \\end{array}\\right.$$ for $r \\in \\mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\\mathbb{R}_{\\textnormal{an}}^{\\mathbb{R}}$-definable functions.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted log-exp-analytic power functions\",\"authors\":\"Andre Opris\",\"doi\":\"10.4064/ap221218-2-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \\\\mathbb{R} \\\\to \\\\mathbb{R}, x \\\\mapsto \\\\left\\\\{\\\\begin{array}{ll} x^r,&x>0, \\\\\\\\ 0,&\\\\textnormal{ else, } \\\\end{array}\\\\right.$$ for $r \\\\in \\\\mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\\\\mathbb{R}_{\\\\textnormal{an}}^{\\\\mathbb{R}}$-definable functions.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap221218-2-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap221218-2-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

形式为$$h:\mathbb{R}\to\mathbb{R},x\mapsto\left\{\boot{array}{ll}x^R,&x>0,\\0,&\textnormal{else,}\end{array}\right的限制对数exp分析函数和幂函数组合的一个准备定理。$$对于$r\in\mathbb{r}$。因此,我们得到了这类函数的Tamm定理的参数版本,它实际上是$\mathbb的Tamm理论的参数版本的完全推广{R}_{\textnormal{an}}^{\mathbb{R}}$可定义函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted log-exp-analytic power functions
A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{\begin{array}{ll} x^r,&x>0, \\ 0,&\textnormal{ else, } \end{array}\right.$$ for $r \in \mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\mathbb{R}_{\textnormal{an}}^{\mathbb{R}}$-definable functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信