Van Nhanh Nguyen, Prabhakar Sharma, Anurag Kumar, Minh Tuan Pham, H. C. Le, Thanh H. Truong, Dao Nam Cao
{"title":"利用Box-Behnken设计、方差分析和灰狼优化算法优化Nahar油生产生物柴油","authors":"Van Nhanh Nguyen, Prabhakar Sharma, Anurag Kumar, Minh Tuan Pham, H. C. Le, Thanh H. Truong, Dao Nam Cao","doi":"10.14710/ijred.2023.54941","DOIUrl":null,"url":null,"abstract":"Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer\",\"authors\":\"Van Nhanh Nguyen, Prabhakar Sharma, Anurag Kumar, Minh Tuan Pham, H. C. Le, Thanh H. Truong, Dao Nam Cao\",\"doi\":\"10.14710/ijred.2023.54941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.\",\"PeriodicalId\":44938,\"journal\":{\"name\":\"International Journal of Renewable Energy Development-IJRED\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development-IJRED\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/ijred.2023.54941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.54941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer
Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.