$m^{*}(G)=4图的可视化密码方案$

IF 0.6 Q3 MATHEMATICS
M. Davarzani
{"title":"$m^{*}(G)=4图的可视化密码方案$","authors":"M. Davarzani","doi":"10.22108/TOC.2019.113671.1599","DOIUrl":null,"url":null,"abstract":"‎Let $G=(V,E)$ be a connected graph and $Gamma (G)$ be the strong access structure where obtained from graph $G$‎. ‎A visual cryptography scheme (VCS) for a set $P$ of participants is a method to encode a secret image such that any pixel of this image change to $m$ subpixels and only qualified sets can recover the secret image by stacking their shares‎. ‎The value of $m$ is called the pixel expansion and the minimum value of the pixel expansion of a VCS for $Gamma (G)$ is denoted by $m^{*}(G)$‎. ‎In this paper we obtain a characterization of all connected graphs $G$ with $m^{*}(G)=4$ and $omega (G)=5$ which $omega(G)$ is the clique number of graph $G$‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"53-66"},"PeriodicalIF":0.6000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual cryptography scheme on graphs with $m^{*}(G)=4$\",\"authors\":\"M. Davarzani\",\"doi\":\"10.22108/TOC.2019.113671.1599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎Let $G=(V,E)$ be a connected graph and $Gamma (G)$ be the strong access structure where obtained from graph $G$‎. ‎A visual cryptography scheme (VCS) for a set $P$ of participants is a method to encode a secret image such that any pixel of this image change to $m$ subpixels and only qualified sets can recover the secret image by stacking their shares‎. ‎The value of $m$ is called the pixel expansion and the minimum value of the pixel expansion of a VCS for $Gamma (G)$ is denoted by $m^{*}(G)$‎. ‎In this paper we obtain a characterization of all connected graphs $G$ with $m^{*}(G)=4$ and $omega (G)=5$ which $omega(G)$ is the clique number of graph $G$‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"53-66\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.113671.1599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.113671.1599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$G=(V,E)$是连通图,$Gamma (G)$是由图$G$获得的强访问结构。一组参与者的视觉加密方案(VCS)是一种对秘密图像进行编码的方法,使得该图像的任何像素更改为$m$子像素,并且只有合格的集合可以通过堆叠它们的份额来恢复秘密图像。$m$的值称为像素扩展,$Gamma (G)$的最小像素扩展值表示为$m^{*}(G)$。本文得到了$m^{*}(G)=4$和$omega(G) =5$的所有连通图$G$的一个刻画,其中$omega(G)$是图$G$的团数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual cryptography scheme on graphs with $m^{*}(G)=4$
‎Let $G=(V,E)$ be a connected graph and $Gamma (G)$ be the strong access structure where obtained from graph $G$‎. ‎A visual cryptography scheme (VCS) for a set $P$ of participants is a method to encode a secret image such that any pixel of this image change to $m$ subpixels and only qualified sets can recover the secret image by stacking their shares‎. ‎The value of $m$ is called the pixel expansion and the minimum value of the pixel expansion of a VCS for $Gamma (G)$ is denoted by $m^{*}(G)$‎. ‎In this paper we obtain a characterization of all connected graphs $G$ with $m^{*}(G)=4$ and $omega (G)=5$ which $omega(G)$ is the clique number of graph $G$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信