F. Jain, R. Gudlavalleti, A. Almalki, B. Saman, P-Y. Chan, J. Chandy, F. Papadimitrakopoulos, E. Heller
{"title":"利用Si量子点通道(QDC)和Ge量子点门(QDG)场效应管和nvram通过小能带跃迁提高比特数","authors":"F. Jain, R. Gudlavalleti, A. Almalki, B. Saman, P-Y. Chan, J. Chandy, F. Papadimitrakopoulos, E. Heller","doi":"10.1142/s0129156423500180","DOIUrl":null,"url":null,"abstract":"This paper presents multi-state QDC-QDG FET structures that has the potential to introduce additional states (8 or 16) by utilizing additional mini-energy sub-bands. Mini-energy bands are formed in Si quantum dot channel (QDC) comprising two silicon oxide cladded Si quantum dots (QDs). Quantum simulations are presented to show more states when additional two germanium oxide cladded Ge dots are added on top of two Si QD layers in the gate region. With the addition of a control gate oxide layer, we transform the QDC-QDG-FET into a quantum dot (QD) nonvolatile random access memory (NVRAM). Quantum simulations are presented.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Number of Bits Via Mini-Energy Band Transitions Using Si Quantum Dot Channel (QDC) and Ge Quantum Dot Gate (QDG) FETs and NVRAMs\",\"authors\":\"F. Jain, R. Gudlavalleti, A. Almalki, B. Saman, P-Y. Chan, J. Chandy, F. Papadimitrakopoulos, E. Heller\",\"doi\":\"10.1142/s0129156423500180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents multi-state QDC-QDG FET structures that has the potential to introduce additional states (8 or 16) by utilizing additional mini-energy sub-bands. Mini-energy bands are formed in Si quantum dot channel (QDC) comprising two silicon oxide cladded Si quantum dots (QDs). Quantum simulations are presented to show more states when additional two germanium oxide cladded Ge dots are added on top of two Si QD layers in the gate region. With the addition of a control gate oxide layer, we transform the QDC-QDG-FET into a quantum dot (QD) nonvolatile random access memory (NVRAM). Quantum simulations are presented.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156423500180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156423500180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Enhancing Number of Bits Via Mini-Energy Band Transitions Using Si Quantum Dot Channel (QDC) and Ge Quantum Dot Gate (QDG) FETs and NVRAMs
This paper presents multi-state QDC-QDG FET structures that has the potential to introduce additional states (8 or 16) by utilizing additional mini-energy sub-bands. Mini-energy bands are formed in Si quantum dot channel (QDC) comprising two silicon oxide cladded Si quantum dots (QDs). Quantum simulations are presented to show more states when additional two germanium oxide cladded Ge dots are added on top of two Si QD layers in the gate region. With the addition of a control gate oxide layer, we transform the QDC-QDG-FET into a quantum dot (QD) nonvolatile random access memory (NVRAM). Quantum simulations are presented.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.