{"title":"计算三环图的k个最大拉普拉斯特征值和","authors":"Pawan Kumar, S. Merajuddin, S. Pirzada","doi":"10.47443/dml.2022.085","DOIUrl":null,"url":null,"abstract":"Let G ( V, E ) be a simple graph with | V ( G ) | = n and | E ( G ) | = m . If S k ( G ) is the sum of k largest Laplacian eigenvalues of G , then Brouwer’s conjecture states that S k ( G ) ≤ m + k ( k +1)2 for 1 ≤ k ≤ n . The girth of a graph G is the length of a smallest cycle in G . If g is the girth of G , then we show that the mentioned conjecture is true for 1 ≤ k ≤ (cid:98) g − 22 (cid:99) . Wang et al. [ Math. Comput. Model. 56 (2012) 60–68] proved that Brouwer’s conjecture is true for bicyclic and tricyclic graphs whenever 1 ≤ k ≤ n with k (cid:54) = 3 . We settle the conjecture under discussion also for tricyclic graphs having no pendant vertices when k = 3 .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the Sum of k Largest Laplacian Eigenvalues of Tricyclic Graphs\",\"authors\":\"Pawan Kumar, S. Merajuddin, S. Pirzada\",\"doi\":\"10.47443/dml.2022.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G ( V, E ) be a simple graph with | V ( G ) | = n and | E ( G ) | = m . If S k ( G ) is the sum of k largest Laplacian eigenvalues of G , then Brouwer’s conjecture states that S k ( G ) ≤ m + k ( k +1)2 for 1 ≤ k ≤ n . The girth of a graph G is the length of a smallest cycle in G . If g is the girth of G , then we show that the mentioned conjecture is true for 1 ≤ k ≤ (cid:98) g − 22 (cid:99) . Wang et al. [ Math. Comput. Model. 56 (2012) 60–68] proved that Brouwer’s conjecture is true for bicyclic and tricyclic graphs whenever 1 ≤ k ≤ n with k (cid:54) = 3 . We settle the conjecture under discussion also for tricyclic graphs having no pendant vertices when k = 3 .\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G (V, E)是一个简单图,其中| V (G) | = n, |e (G) | = m。如果sk (G)是G的k个最大拉普拉斯特征值的和,则Brouwer猜想表明,当1≤k≤n时,sk (G)≤m + k (k +1)2。图G的周长是图G中最小环的长度。如果g是g的周长,那么我们证明了上述猜想对于1≤k≤(cid:98) g−22 (cid:99)成立。Wang et al.[数学]第一版。Model. 56(2012) 60-68]证明了当1≤k≤n且k (cid:54) = 3时,Brouwer猜想对双环和三环图成立。对于k = 3时无垂点的三环图,我们也解决了讨论中的猜想。
Computing the Sum of k Largest Laplacian Eigenvalues of Tricyclic Graphs
Let G ( V, E ) be a simple graph with | V ( G ) | = n and | E ( G ) | = m . If S k ( G ) is the sum of k largest Laplacian eigenvalues of G , then Brouwer’s conjecture states that S k ( G ) ≤ m + k ( k +1)2 for 1 ≤ k ≤ n . The girth of a graph G is the length of a smallest cycle in G . If g is the girth of G , then we show that the mentioned conjecture is true for 1 ≤ k ≤ (cid:98) g − 22 (cid:99) . Wang et al. [ Math. Comput. Model. 56 (2012) 60–68] proved that Brouwer’s conjecture is true for bicyclic and tricyclic graphs whenever 1 ≤ k ≤ n with k (cid:54) = 3 . We settle the conjecture under discussion also for tricyclic graphs having no pendant vertices when k = 3 .