非线性混合分数阶积分微分方程的存在性和吸引性定理

IF 0.6 Q3 MATHEMATICS
B. Dhage
{"title":"非线性混合分数阶积分微分方程的存在性和吸引性定理","authors":"B. Dhage","doi":"10.4067/s0719-06462020000300325","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the existence and a global attractivity results for a nonlinear mixed quadratic and linearly perturbed hybrid fractional integrodifferential equation of second type involving the Caputo fractional derivative on unbounded intervals of real line with the mixed arguments of anticipations and retardation. The hybrid fixed point theorem of Dhage is used in the analysis of our nonlinear fractional integrodifferential problem. A positivity result is also obtained under certain usual natural conditions. Our hypotheses and claims have also been explained with the help of a natural realization.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation\",\"authors\":\"B. Dhage\",\"doi\":\"10.4067/s0719-06462020000300325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish the existence and a global attractivity results for a nonlinear mixed quadratic and linearly perturbed hybrid fractional integrodifferential equation of second type involving the Caputo fractional derivative on unbounded intervals of real line with the mixed arguments of anticipations and retardation. The hybrid fixed point theorem of Dhage is used in the analysis of our nonlinear fractional integrodifferential problem. A positivity result is also obtained under certain usual natural conditions. Our hypotheses and claims have also been explained with the help of a natural realization.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462020000300325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000300325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们建立了一个非线性混合二次线性扰动混合分数积分微分方程的存在性和全局吸引性结果,该方程包含实线无界区间上的Caputo分数导数,具有预期和延迟的混合自变量。Dhage的混合不动点定理用于分析我们的非线性分数积分微分问题。在某些通常的自然条件下也可以获得阳性结果。我们的假设和主张也在自然认识的帮助下得到了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation
In this paper, we establish the existence and a global attractivity results for a nonlinear mixed quadratic and linearly perturbed hybrid fractional integrodifferential equation of second type involving the Caputo fractional derivative on unbounded intervals of real line with the mixed arguments of anticipations and retardation. The hybrid fixed point theorem of Dhage is used in the analysis of our nonlinear fractional integrodifferential problem. A positivity result is also obtained under certain usual natural conditions. Our hypotheses and claims have also been explained with the help of a natural realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信