{"title":"三函数奇异性的局部理论与积映射","authors":"Kazuto Takao","doi":"10.32917/h2021020","DOIUrl":null,"url":null,"abstract":"A bstract . Suppose that a smooth map ð f ; g ; h Þ : R n ! R 3 , where n b 3, has a stable singularity at the origin. We characterize the stability of the function f : R n ! R and the map ð f ; g Þ : R n ! R 2 at the origin in terms of the discriminant set of ð f ; g ; h Þ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local theory of singularities of three functions and the product maps\",\"authors\":\"Kazuto Takao\",\"doi\":\"10.32917/h2021020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . Suppose that a smooth map ð f ; g ; h Þ : R n ! R 3 , where n b 3, has a stable singularity at the origin. We characterize the stability of the function f : R n ! R and the map ð f ; g Þ : R n ! R 2 at the origin in terms of the discriminant set of ð f ; g ; h Þ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2021020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local theory of singularities of three functions and the product maps
A bstract . Suppose that a smooth map ð f ; g ; h Þ : R n ! R 3 , where n b 3, has a stable singularity at the origin. We characterize the stability of the function f : R n ! R and the map ð f ; g Þ : R n ! R 2 at the origin in terms of the discriminant set of ð f ; g ; h Þ .