量子$6j$的增长-符号及其在体积猜想中的应用

IF 1.3 1区 数学 Q1 MATHEMATICS
G. Belletti, Renaud Detcherry, Efstratia Kalfagianni, Tian Yang
{"title":"量子$6j$的增长-符号及其在体积猜想中的应用","authors":"G. Belletti, Renaud Detcherry, Efstratia Kalfagianni, Tian Yang","doi":"10.4310/jdg/1645207506","DOIUrl":null,"url":null,"abstract":"We prove the Turaev-Viro invariants volume conjecture for complements of fundamental shadow links: an infinite family of hyperbolic link complements in connected sums of copies of $S^1\\times S^2$. The main step of the proof is to find a sharp upper bound on the growth rate of the quantum $6j-$symbol evaluated at $e^{\\frac{2\\pi i}{r}}.$ As an application of the main result, we show that the volume of any hyperbolic 3-manifold with empty or toroidal boundary can be estimated in terms of the Turaev-Viro invariants of an appropriate link contained in it. We also build additional evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about the geometric properties of surface mapping class groups detected by the quantum representations.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Growth of quantum $6j$-symbols and applications to the volume conjecture\",\"authors\":\"G. Belletti, Renaud Detcherry, Efstratia Kalfagianni, Tian Yang\",\"doi\":\"10.4310/jdg/1645207506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the Turaev-Viro invariants volume conjecture for complements of fundamental shadow links: an infinite family of hyperbolic link complements in connected sums of copies of $S^1\\\\times S^2$. The main step of the proof is to find a sharp upper bound on the growth rate of the quantum $6j-$symbol evaluated at $e^{\\\\frac{2\\\\pi i}{r}}.$ As an application of the main result, we show that the volume of any hyperbolic 3-manifold with empty or toroidal boundary can be estimated in terms of the Turaev-Viro invariants of an appropriate link contained in it. We also build additional evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about the geometric properties of surface mapping class groups detected by the quantum representations.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1645207506\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1645207506","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

证明了基本阴影连杆补的Turaev-Viro不变量体积猜想:$S^1\times S^2$副本的连通和中的无限族双曲连杆补。证明的主要步骤是找到在$e^{\frac{2\pi i}{r}}.$处计算的量子$6j-$符号的增长率的一个明显的上界。作为主要结果的一个应用,我们证明了任何具有空边界或环面边界的双曲3流形的体积都可以根据其中包含的适当环节的Turaev-Viro不变量来估计。我们还为Andersen, Masbaum和Ueno的一个猜想(AMU猜想)建立了额外的证据,该猜想是关于由量子表示检测到的表面映射类群的几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth of quantum $6j$-symbols and applications to the volume conjecture
We prove the Turaev-Viro invariants volume conjecture for complements of fundamental shadow links: an infinite family of hyperbolic link complements in connected sums of copies of $S^1\times S^2$. The main step of the proof is to find a sharp upper bound on the growth rate of the quantum $6j-$symbol evaluated at $e^{\frac{2\pi i}{r}}.$ As an application of the main result, we show that the volume of any hyperbolic 3-manifold with empty or toroidal boundary can be estimated in terms of the Turaev-Viro invariants of an appropriate link contained in it. We also build additional evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about the geometric properties of surface mapping class groups detected by the quantum representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信