幂等2-环的分解

Pub Date : 2022-03-01 DOI:10.4064/cm8720-3-2022
C. Lamprakis, Th. Theohari-Apostolidi
{"title":"幂等2-环的分解","authors":"C. Lamprakis, Th. Theohari-Apostolidi","doi":"10.4064/cm8720-3-2022","DOIUrl":null,"url":null,"abstract":"Let L be a finite Galois field extension of K with Galois group G. We decompose any idempotent 2-cocycle f using finite sequences of descending two-sided ideals of the corresponding weak crossed product algebra Af . We specialize the results in case f is the corresponding idempotent 2-cocycle fr for some semilinear map r ∶ G → Ω, where Ω is a multiplicative monoid with minimum element.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of idempotent 2-cocycles\",\"authors\":\"C. Lamprakis, Th. Theohari-Apostolidi\",\"doi\":\"10.4064/cm8720-3-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be a finite Galois field extension of K with Galois group G. We decompose any idempotent 2-cocycle f using finite sequences of descending two-sided ideals of the corresponding weak crossed product algebra Af . We specialize the results in case f is the corresponding idempotent 2-cocycle fr for some semilinear map r ∶ G → Ω, where Ω is a multiplicative monoid with minimum element.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8720-3-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8720-3-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设L是具有Galois群G的K的有限Galois域扩张。我们使用相应的弱叉积代数Af的下降双边理想的有限序列分解任何幂等2-环f。我们专门讨论了f是某个半线性映射r∶G的相应幂等2-环fr的情况下的结果→ Ω,其中Ω是具有最小元素的乘法半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Decomposition of idempotent 2-cocycles
Let L be a finite Galois field extension of K with Galois group G. We decompose any idempotent 2-cocycle f using finite sequences of descending two-sided ideals of the corresponding weak crossed product algebra Af . We specialize the results in case f is the corresponding idempotent 2-cocycle fr for some semilinear map r ∶ G → Ω, where Ω is a multiplicative monoid with minimum element.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信