{"title":"有限群上的逆模糊函数与自同构","authors":"Imke Toborg","doi":"10.2478/amsil-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract If G is a finite group, then a bijective function f : G → G is inverse ambiguous if and only if f(x)−1 = f−1(x) for all x ∈ G. We give a precise description when a finite group admits an inverse ambiguous function and when a finite group admits an inverse ambiguous automorphism.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"284 - 297"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Ambiguous Functions and Automorphisms on Finite Groups\",\"authors\":\"Imke Toborg\",\"doi\":\"10.2478/amsil-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract If G is a finite group, then a bijective function f : G → G is inverse ambiguous if and only if f(x)−1 = f−1(x) for all x ∈ G. We give a precise description when a finite group admits an inverse ambiguous function and when a finite group admits an inverse ambiguous automorphism.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"284 - 297\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inverse Ambiguous Functions and Automorphisms on Finite Groups
Abstract If G is a finite group, then a bijective function f : G → G is inverse ambiguous if and only if f(x)−1 = f−1(x) for all x ∈ G. We give a precise description when a finite group admits an inverse ambiguous function and when a finite group admits an inverse ambiguous automorphism.