非自治动力系统的点态弱混合性质和李-约克灵敏度

IF 0.4 Q4 MATHEMATICS
Mona Effati, A. Z. Bahabadi, B. Honary
{"title":"非自治动力系统的点态弱混合性质和李-约克灵敏度","authors":"Mona Effati, A. Z. Bahabadi, B. Honary","doi":"10.1080/1726037X.2020.1779972","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we present novel concept of pointwise weakly mixing property (PWMP) for autonomous (ADS) and nonautonomous (NDS) dynamical systems. We show that if NDS (X, f 1,∞) has PWMP, then proximal cells are dense in X and in addition NDS is sensitive. Furthermore we conclude that NDS (X, f 1,∞) is Li-Yorke sensitive and also densely Li-Yorke chaotic with pointwise weakly mixing property.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"71 - 80"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1779972","citationCount":"1","resultStr":"{\"title\":\"Pointwise Weakly Mixing Property and Li-Yorke Sensitivity in Nonautonomous Dynamical Systems\",\"authors\":\"Mona Effati, A. Z. Bahabadi, B. Honary\",\"doi\":\"10.1080/1726037X.2020.1779972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we present novel concept of pointwise weakly mixing property (PWMP) for autonomous (ADS) and nonautonomous (NDS) dynamical systems. We show that if NDS (X, f 1,∞) has PWMP, then proximal cells are dense in X and in addition NDS is sensitive. Furthermore we conclude that NDS (X, f 1,∞) is Li-Yorke sensitive and also densely Li-Yorke chaotic with pointwise weakly mixing property.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"71 - 80\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1779972\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1779972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1779972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了自治(ADS)和非自治(NDS)动力系统点态弱混合性质(PWMP)的新概念。我们发现,如果NDS(X,f1,∞)具有PWMP,则X中的近端细胞密集,此外NDS是敏感的。进一步证明了NDS(X,f1,∞)是李-约克敏感的,也是具有逐点弱混合性质的稠密李-约克混沌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise Weakly Mixing Property and Li-Yorke Sensitivity in Nonautonomous Dynamical Systems
Abstract In this paper we present novel concept of pointwise weakly mixing property (PWMP) for autonomous (ADS) and nonautonomous (NDS) dynamical systems. We show that if NDS (X, f 1,∞) has PWMP, then proximal cells are dense in X and in addition NDS is sensitive. Furthermore we conclude that NDS (X, f 1,∞) is Li-Yorke sensitive and also densely Li-Yorke chaotic with pointwise weakly mixing property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信