分数布朗运动驱动的Deplay BSDE

IF 0.3 Q4 STATISTICS & PROBABILITY
Sadibou Aidara, Ibrahima Sané
{"title":"分数布朗运动驱动的Deplay BSDE","authors":"Sadibou Aidara, Ibrahima Sané","doi":"10.1515/rose-2021-2069","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with a class of deplay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout this paper is the divergence-type integral.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"21 - 31"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deplay BSDEs driven by fractional Brownian motion\",\"authors\":\"Sadibou Aidara, Ibrahima Sané\",\"doi\":\"10.1515/rose-2021-2069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with a class of deplay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\\\\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout this paper is the divergence-type integral.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"21 - 31\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究一类分数阶布朗运动驱动的后向随机微分方程(赫斯特参数H大于1 2 {\frac{1}{2}})。在这种类型的方程中,时刻t的生成器不仅依赖于现在的解,也依赖于过去的解。我们从本质上建立了在Lipschitz系数和非Lipschitz系数情况下解的存在唯一性。本文所使用的随机积分是散度型积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deplay BSDEs driven by fractional Brownian motion
Abstract This paper deals with a class of deplay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout this paper is the divergence-type integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信