Sturm-Liouville边界条件下分数边值问题的Lyapunov型不等式的一个注记

IF 0.4 Q4 MATHEMATICS
Anil Chavada, Nimisha Pathak
{"title":"Sturm-Liouville边界条件下分数边值问题的Lyapunov型不等式的一个注记","authors":"Anil Chavada, Nimisha Pathak","doi":"10.30495/JME.V0I0.1634","DOIUrl":null,"url":null,"abstract":"In this note, we consider fractional Strum-Liouville boundary value problem containing Caputo derivative of order $\\alpha$, $ 1<\\alpha\\leq 2$ with mixed boundary conditions. We establish Cauchy-Schwarz-type inequality to determine a lower bound for the smallest eigenvalues. We give comparison between the smallest eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-type inequalities. Result shows that the Lyapunov-type inequality gives the worse and Cauchy-Schwarz-type inequality gives better lower bound estimates for the smallest eigenvalues. We then use these inequalities to obtain an interval where a linear combination of certain Mittag-Leffler functions have no real zeros.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Lyapunov-type inequalities for fractional boundary value problems with Sturm-Liouville boundary conditions\",\"authors\":\"Anil Chavada, Nimisha Pathak\",\"doi\":\"10.30495/JME.V0I0.1634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we consider fractional Strum-Liouville boundary value problem containing Caputo derivative of order $\\\\alpha$, $ 1<\\\\alpha\\\\leq 2$ with mixed boundary conditions. We establish Cauchy-Schwarz-type inequality to determine a lower bound for the smallest eigenvalues. We give comparison between the smallest eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-type inequalities. Result shows that the Lyapunov-type inequality gives the worse and Cauchy-Schwarz-type inequality gives better lower bound estimates for the smallest eigenvalues. We then use these inequalities to obtain an interval where a linear combination of certain Mittag-Leffler functions have no real zeros.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了含有阶为$\alpha$,$1<\alpha\leq2$的Caputo导数的分数阶Strum-Liouville边值问题。我们建立了Cauchy-Schwarz型不等式来确定最小特征值的下界。比较了李雅普诺夫型和柯西-施瓦兹型不等式的最小特征值及其下界。结果表明,李雅普诺夫型不等式给出的结果更差,而柯西-施瓦兹型不等式给出了最小特征值的较好下界估计。然后,我们使用这些不等式来获得一个区间,其中某些Mittag-Leffler函数的线性组合没有实零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on Lyapunov-type inequalities for fractional boundary value problems with Sturm-Liouville boundary conditions
In this note, we consider fractional Strum-Liouville boundary value problem containing Caputo derivative of order $\alpha$, $ 1<\alpha\leq 2$ with mixed boundary conditions. We establish Cauchy-Schwarz-type inequality to determine a lower bound for the smallest eigenvalues. We give comparison between the smallest eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-type inequalities. Result shows that the Lyapunov-type inequality gives the worse and Cauchy-Schwarz-type inequality gives better lower bound estimates for the smallest eigenvalues. We then use these inequalities to obtain an interval where a linear combination of certain Mittag-Leffler functions have no real zeros.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信