交换形式幂级数与形式泛函方程族

IF 0.4 Q4 MATHEMATICS
H. Fripertinger, L. Reich
{"title":"交换形式幂级数与形式泛函方程族","authors":"H. Fripertinger, L. Reich","doi":"10.2478/amsil-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we describe families of commuting invertible formal power series in one indeterminate over ℂ, using the method of formal functional equations. We give a characterization of such families where the set of multipliers (first coefficients) σ of its members F (x) = σx + . . . is infinite, in particular of such families which are maximal with respect to inclusion, so called families of type I. The description of these families is based on Aczél–Jabotinsky differential equations, iteration groups, and on some results on normal forms of invertible series with respect to conjugation.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"55 - 76"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of Commuting Formal Power Series and Formal Functional Equations\",\"authors\":\"H. Fripertinger, L. Reich\",\"doi\":\"10.2478/amsil-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we describe families of commuting invertible formal power series in one indeterminate over ℂ, using the method of formal functional equations. We give a characterization of such families where the set of multipliers (first coefficients) σ of its members F (x) = σx + . . . is infinite, in particular of such families which are maximal with respect to inclusion, so called families of type I. The description of these families is based on Aczél–Jabotinsky differential equations, iteration groups, and on some results on normal forms of invertible series with respect to conjugation.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"55 - 76\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文描述了一个不确定域上的可交换可逆形式幂级数的族ℂ, 使用形式函数方程的方法。我们给出了这类族的一个特征,其中它的成员F(x)=σx+。是无限的,特别是关于包含性最大的这类族,即所谓的I型族。这些族的描述是基于Aczél–Jabotinsky微分方程、迭代群和关于共轭的可逆级数的正规形式的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of Commuting Formal Power Series and Formal Functional Equations
Abstract In this paper we describe families of commuting invertible formal power series in one indeterminate over ℂ, using the method of formal functional equations. We give a characterization of such families where the set of multipliers (first coefficients) σ of its members F (x) = σx + . . . is infinite, in particular of such families which are maximal with respect to inclusion, so called families of type I. The description of these families is based on Aczél–Jabotinsky differential equations, iteration groups, and on some results on normal forms of invertible series with respect to conjugation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信