端点$\ well ^r$改善素数平均值的估计

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Lacey, H. Mousavi, Yaghoub Rahimi
{"title":"端点$\\ well ^r$改善素数平均值的估计","authors":"M. Lacey, H. Mousavi, Yaghoub Rahimi","doi":"10.4310/mrl.2022.v29.n6.a6","DOIUrl":null,"url":null,"abstract":"Let $ \\Lambda $ denote von Mangoldt's function, and consider the averages \\begin{align*} A_N f (x)&=\\frac{1}{N}\\sum_{1\\leq n \\leq N}f(x-n)\\Lambda(n) . \\end{align*} We prove sharp $ \\ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\\subset [0,N]$ there holds \\begin{equation*} N ^{-1} \\langle A_N \\mathbf 1_{F} , \\mathbf 1_{G} \\rangle \\ll \\frac{\\lvert F\\rvert \\cdot \\lvert G\\rvert} { N ^2 } \\Bigl( \\operatorname {Log} \\frac{\\lvert F\\rvert \\cdot \\lvert G\\rvert} { N ^2 } \\Bigr) ^{t}, \\end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \\sup_N A_N \\mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Endpoint $\\\\ell^r$ improving estimates for prime averages\",\"authors\":\"M. Lacey, H. Mousavi, Yaghoub Rahimi\",\"doi\":\"10.4310/mrl.2022.v29.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ \\\\Lambda $ denote von Mangoldt's function, and consider the averages \\\\begin{align*} A_N f (x)&=\\\\frac{1}{N}\\\\sum_{1\\\\leq n \\\\leq N}f(x-n)\\\\Lambda(n) . \\\\end{align*} We prove sharp $ \\\\ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\\\\subset [0,N]$ there holds \\\\begin{equation*} N ^{-1} \\\\langle A_N \\\\mathbf 1_{F} , \\\\mathbf 1_{G} \\\\rangle \\\\ll \\\\frac{\\\\lvert F\\\\rvert \\\\cdot \\\\lvert G\\\\rvert} { N ^2 } \\\\Bigl( \\\\operatorname {Log} \\\\frac{\\\\lvert F\\\\rvert \\\\cdot \\\\lvert G\\\\rvert} { N ^2 } \\\\Bigr) ^{t}, \\\\end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \\\\sup_N A_N \\\\mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n6.a6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$ \Lambda $表示von Mangoldt函数,并考虑其平均值\begin{align*} A_N f (x)&=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*}我们证明了这些平均值的显著$ \ell ^{p}$ -改进,以及极大函数的稀疏边界。最简单的不等式是,对于集合$ F, G\subset [0,N]$有\begin{equation*} N ^{-1} \langle A_N \mathbf 1_{F} , \mathbf 1_{G} \rangle \ll \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigl( \operatorname {Log} \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigr) ^{t}, \end{equation*},其中$ t=2$,或者假设广义黎曼假设,$ t=1$。对极大函数$ \sup_N A_N \mathbf 1_{F}$证明了相应的稀疏界。$ t=1$的不平等非常明显。其证明依据是圆法和布尔甘的插值论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endpoint $\ell^r$ improving estimates for prime averages
Let $ \Lambda $ denote von Mangoldt's function, and consider the averages \begin{align*} A_N f (x)&=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*} We prove sharp $ \ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\subset [0,N]$ there holds \begin{equation*} N ^{-1} \langle A_N \mathbf 1_{F} , \mathbf 1_{G} \rangle \ll \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigl( \operatorname {Log} \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigr) ^{t}, \end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \sup_N A_N \mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信