盐动力对含盐盆地沉积物运动的地形控制:物理和数值模拟相结合的方法

Q1 Earth and Planetary Sciences
GSA Today Pub Date : 2023-04-13 DOI:10.1130/gsatg561a.1
Jinyu Zhang, L. Moscardelli, T. Dooley, Nur Schuba
{"title":"盐动力对含盐盆地沉积物运动的地形控制:物理和数值模拟相结合的方法","authors":"Jinyu Zhang, L. Moscardelli, T. Dooley, Nur Schuba","doi":"10.1130/gsatg561a.1","DOIUrl":null,"url":null,"abstract":"Allogenic controls are frequently cited as key factors influencing basin evolution; however, fewer studies perform paleo-topographic reconstructions to examine the impact of topography in the development of stratigraphic sequences. Disentangling how allogenic versus autogenic controls affect the stratigraphic succession within a basin affected by salt tectonics is particularly challenging because decoupling the stratigraphic signature of lithospheric induced uplift and subsidence from salt tectonics is not a trivial exercise. We tackle this problem by integrating physical modeling results with a landscape numerical model and compare results with a case scenario from the subsurface. The physical model provides surface displacement data that are then used as inputs into the landscape numerical model to simulate the surface and stratigraphic evolution of a salt tectonic basin during a 25-m.y. timespan and within the context of a continental-scale source-to-sink (S2S) system. Results show that the evolution of salt structures impact the development and diversion of sedimentary routing systems within salt basins, thus influencing the character of the stratigraphic record independently of allo-genic factors such as lithospheric induced uplift. Modeling results highlight the importance of reconstructing the paleo-topography of ancient depositional systems affected by salt tectonics to truly understand the nature of the final stratigraphic record.","PeriodicalId":35784,"journal":{"name":"GSA Today","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halokinetic Induced Topographic Controls on Sediment Routing in Salt-Bearing Basins: A Combined Physical and Numerical Modeling Approach\",\"authors\":\"Jinyu Zhang, L. Moscardelli, T. Dooley, Nur Schuba\",\"doi\":\"10.1130/gsatg561a.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allogenic controls are frequently cited as key factors influencing basin evolution; however, fewer studies perform paleo-topographic reconstructions to examine the impact of topography in the development of stratigraphic sequences. Disentangling how allogenic versus autogenic controls affect the stratigraphic succession within a basin affected by salt tectonics is particularly challenging because decoupling the stratigraphic signature of lithospheric induced uplift and subsidence from salt tectonics is not a trivial exercise. We tackle this problem by integrating physical modeling results with a landscape numerical model and compare results with a case scenario from the subsurface. The physical model provides surface displacement data that are then used as inputs into the landscape numerical model to simulate the surface and stratigraphic evolution of a salt tectonic basin during a 25-m.y. timespan and within the context of a continental-scale source-to-sink (S2S) system. Results show that the evolution of salt structures impact the development and diversion of sedimentary routing systems within salt basins, thus influencing the character of the stratigraphic record independently of allo-genic factors such as lithospheric induced uplift. Modeling results highlight the importance of reconstructing the paleo-topography of ancient depositional systems affected by salt tectonics to truly understand the nature of the final stratigraphic record.\",\"PeriodicalId\":35784,\"journal\":{\"name\":\"GSA Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSA Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/gsatg561a.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSA Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/gsatg561a.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

同成因控制常被认为是影响盆地演化的关键因素;然而,很少有研究进行古地形重建来考察地形对地层序列发育的影响。弄清同种控制与自生控制如何影响受盐构造影响的盆地内的地层序列尤其具有挑战性,因为将岩石圈引起的隆起和沉降的地层特征与盐构造脱钩并非易事。我们通过将物理建模结果与景观数值模型相结合来解决这个问题,并将结果与地下的案例场景进行比较。物理模型提供了地表位移数据,这些数据随后被用作景观数值模型的输入,以模拟在25 m.y.的时间跨度内以及在大陆尺度的源-汇(S2S)系统的背景下盐构造盆地的地表和地层演化。结果表明,盐构造的演化影响着盐盆内沉积路由系统的发育和分流,从而影响了地层记录的特征,而不受岩石圈抬升等其他成因因素的影响。建模结果强调了重建受盐构造影响的古代沉积体系的古地形的重要性,以真正了解最终地层记录的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Halokinetic Induced Topographic Controls on Sediment Routing in Salt-Bearing Basins: A Combined Physical and Numerical Modeling Approach
Allogenic controls are frequently cited as key factors influencing basin evolution; however, fewer studies perform paleo-topographic reconstructions to examine the impact of topography in the development of stratigraphic sequences. Disentangling how allogenic versus autogenic controls affect the stratigraphic succession within a basin affected by salt tectonics is particularly challenging because decoupling the stratigraphic signature of lithospheric induced uplift and subsidence from salt tectonics is not a trivial exercise. We tackle this problem by integrating physical modeling results with a landscape numerical model and compare results with a case scenario from the subsurface. The physical model provides surface displacement data that are then used as inputs into the landscape numerical model to simulate the surface and stratigraphic evolution of a salt tectonic basin during a 25-m.y. timespan and within the context of a continental-scale source-to-sink (S2S) system. Results show that the evolution of salt structures impact the development and diversion of sedimentary routing systems within salt basins, thus influencing the character of the stratigraphic record independently of allo-genic factors such as lithospheric induced uplift. Modeling results highlight the importance of reconstructing the paleo-topography of ancient depositional systems affected by salt tectonics to truly understand the nature of the final stratigraphic record.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GSA Today
GSA Today Earth and Planetary Sciences-Geology
CiteScore
4.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信