期权隐含信息:波动面与它有什么关系?

IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE
Maxim Ulrich, Simon Walther
{"title":"期权隐含信息:波动面与它有什么关系?","authors":"Maxim Ulrich, Simon Walther","doi":"10.2139/ssrn.3184767","DOIUrl":null,"url":null,"abstract":"We find that option-implied information such as forward-looking variance, skewness and the variance risk premium are sensitive to the way the volatility surface is constructed. For some state-of-the-art volatility surfaces, the differences are economically surprisingly large and lead to systematic biases, especially for out-of-the-money put options. Estimates for risk-neutral variance differ across volatility surfaces by more than 10% on average, leading to variance risk premium estimates that differ by 60% on average. The variations are even larger for risk-neutral skewness. To overcome this problem, we propose a volatility surface that is built with a one-dimensional kernel regression. We assess its statistical accuracy relative to existing state-of-the-art parametric, semi- and non-parametric volatility surfaces by means of leave-one-out cross-validation, including the volatility surface of OptionMetrics. Based on 14 years of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data we conclude that the proposed one-dimensional kernel regression represents option market information more accurately than existing approaches of the literature.","PeriodicalId":45022,"journal":{"name":"Review of Derivatives Research","volume":"23 1","pages":"323-355"},"PeriodicalIF":0.7000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Option-implied information: What’s the vol surface got to do with it?\",\"authors\":\"Maxim Ulrich, Simon Walther\",\"doi\":\"10.2139/ssrn.3184767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find that option-implied information such as forward-looking variance, skewness and the variance risk premium are sensitive to the way the volatility surface is constructed. For some state-of-the-art volatility surfaces, the differences are economically surprisingly large and lead to systematic biases, especially for out-of-the-money put options. Estimates for risk-neutral variance differ across volatility surfaces by more than 10% on average, leading to variance risk premium estimates that differ by 60% on average. The variations are even larger for risk-neutral skewness. To overcome this problem, we propose a volatility surface that is built with a one-dimensional kernel regression. We assess its statistical accuracy relative to existing state-of-the-art parametric, semi- and non-parametric volatility surfaces by means of leave-one-out cross-validation, including the volatility surface of OptionMetrics. Based on 14 years of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data we conclude that the proposed one-dimensional kernel regression represents option market information more accurately than existing approaches of the literature.\",\"PeriodicalId\":45022,\"journal\":{\"name\":\"Review of Derivatives Research\",\"volume\":\"23 1\",\"pages\":\"323-355\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Derivatives Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3184767\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Derivatives Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.3184767","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 8

摘要

我们发现前瞻性方差、偏度和方差风险溢价等期权隐含信息对波动面构造方式敏感。对于一些最先进的波动率面,差异在经济上出奇地大,并导致系统性偏差,特别是对于价外看跌期权。对不同波动面风险中性方差的估计平均相差10%以上,导致方差风险溢价估计平均相差60%。风险中性偏度的差异甚至更大。为了克服这个问题,我们提出了一个用一维核回归构建的波动面。我们通过留一交叉验证来评估其相对于现有最先进的参数、半和非参数波动面(包括OptionMetrics的波动面)的统计准确性。基于14年的标准普尔500指数和欧洲斯托克50指数的日尾和日内期权数据,我们得出结论,提出的一维核回归比现有的文献方法更准确地代表期权市场信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option-implied information: What’s the vol surface got to do with it?
We find that option-implied information such as forward-looking variance, skewness and the variance risk premium are sensitive to the way the volatility surface is constructed. For some state-of-the-art volatility surfaces, the differences are economically surprisingly large and lead to systematic biases, especially for out-of-the-money put options. Estimates for risk-neutral variance differ across volatility surfaces by more than 10% on average, leading to variance risk premium estimates that differ by 60% on average. The variations are even larger for risk-neutral skewness. To overcome this problem, we propose a volatility surface that is built with a one-dimensional kernel regression. We assess its statistical accuracy relative to existing state-of-the-art parametric, semi- and non-parametric volatility surfaces by means of leave-one-out cross-validation, including the volatility surface of OptionMetrics. Based on 14 years of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data we conclude that the proposed one-dimensional kernel regression represents option market information more accurately than existing approaches of the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
期刊介绍: The proliferation of derivative assets during the past two decades is unprecedented. With this growth in derivatives comes the need for financial institutions, institutional investors, and corporations to use sophisticated quantitative techniques to take full advantage of the spectrum of these new financial instruments. Academic research has significantly contributed to our understanding of derivative assets and markets. The growth of derivative asset markets has been accompanied by a commensurate growth in the volume of scientific research. The Review of Derivatives Research provides an international forum for researchers involved in the general areas of derivative assets. The Review publishes high-quality articles dealing with the pricing and hedging of derivative assets on any underlying asset (commodity, interest rate, currency, equity, real estate, traded or non-traded, etc.). Specific topics include but are not limited to: econometric analyses of derivative markets (efficiency, anomalies, performance, etc.) analysis of swap markets market microstructure and volatility issues regulatory and taxation issues credit risk new areas of applications such as corporate finance (capital budgeting, debt innovations), international trade (tariffs and quotas), banking and insurance (embedded options, asset-liability management) risk-sharing issues and the design of optimal derivative securities risk management, management and control valuation and analysis of the options embedded in capital projects valuation and hedging of exotic options new areas for further development (i.e. natural resources, environmental economics. The Review has a double-blind refereeing process. In contrast to the delays in the decision making and publication processes of many current journals, the Review will provide authors with an initial decision within nine weeks of receipt of the manuscript and a goal of publication within six months after acceptance. Finally, a section of the journal is available for rapid publication on `hot'' issues in the market, small technical pieces, and timely essays related to pending legislation and policy. Officially cited as: Rev Deriv Res
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信