混合范数Lebesgue空间经相关Herz空间傅里叶变换的可和性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Long Huang, F. Weisz, Dachun Yang, Wen Yuan
{"title":"混合范数Lebesgue空间经相关Herz空间傅里叶变换的可和性","authors":"Long Huang, F. Weisz, Dachun Yang, Wen Yuan","doi":"10.1142/S0219530521500135","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], [Formula: see text] be the mixed-norm Lebesgue space, and [Formula: see text] an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy–Littlewood maximal operator [Formula: see text] from [Formula: see text] to itself or to the weak mixed-norm Lebesgue space [Formula: see text] under some sharp assumptions on [Formula: see text] and [Formula: see text], the authors show that the [Formula: see text]-mean of [Formula: see text] converges to [Formula: see text] almost everywhere over the diagonal if the Fourier transform [Formula: see text] of [Formula: see text] belongs to some mixed-norm homogeneous Herz space [Formula: see text] with [Formula: see text] being the conjugate index of [Formula: see text]. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of [Formula: see text]-means to the unrestricted case. Finally, the authors show that the [Formula: see text]-mean of [Formula: see text] converges over the diagonal to [Formula: see text] at all its [Formula: see text]-Lebesgue points if and only if [Formula: see text] belongs to [Formula: see text], and a similar conclusion also holds true for the unrestricted convergence at strong [Formula: see text]-Lebesgue points. Observe that, in all these results, those Herz spaces to which [Formula: see text] belongs prove to be the best choice in some sense.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces\",\"authors\":\"Long Huang, F. Weisz, Dachun Yang, Wen Yuan\",\"doi\":\"10.1142/S0219530521500135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text], [Formula: see text] be the mixed-norm Lebesgue space, and [Formula: see text] an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy–Littlewood maximal operator [Formula: see text] from [Formula: see text] to itself or to the weak mixed-norm Lebesgue space [Formula: see text] under some sharp assumptions on [Formula: see text] and [Formula: see text], the authors show that the [Formula: see text]-mean of [Formula: see text] converges to [Formula: see text] almost everywhere over the diagonal if the Fourier transform [Formula: see text] of [Formula: see text] belongs to some mixed-norm homogeneous Herz space [Formula: see text] with [Formula: see text] being the conjugate index of [Formula: see text]. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of [Formula: see text]-means to the unrestricted case. Finally, the authors show that the [Formula: see text]-mean of [Formula: see text] converges over the diagonal to [Formula: see text] at all its [Formula: see text]-Lebesgue points if and only if [Formula: see text] belongs to [Formula: see text], and a similar conclusion also holds true for the unrestricted convergence at strong [Formula: see text]-Lebesgue points. Observe that, in all these results, those Herz spaces to which [Formula: see text] belongs prove to be the best choice in some sense.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219530521500135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530521500135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 16

摘要

设[公式:见文]、[公式:见文]为混合范数勒贝格空间,[公式:见文]为可积函数。本文通过建立混合中心Hardy-Littlewood极大算子[公式:见文]从[公式:见文]到自身或到弱混合范数Lebesgue空间[公式:见文]的有界性,在[公式:见文]和[公式:见文]的一些尖锐假设下,作者证明了[公式:见文]的[公式:见文]-均值在对角线上几乎处处收敛于[公式:见文],如果[公式:[公式:见文]属于混合范数齐次赫兹空间[公式:见文],[公式:见文]是[公式:见文]的共轭指数。进一步,通过引入另一种混合范数齐次赫兹空间并建立该赫兹空间的表征,作者将上述的[公式:见文]-means的几乎处处收敛推广到无限制情况。最后,作者证明了[公式:见文]的[公式:见文]-均值在其所有[公式:见文]-Lebesgue点上都收敛于[公式:见文]当且仅当[公式:见文]属于[公式:见文],并且对于强[公式:见文]-Lebesgue点上的无限制收敛也有类似的结论成立。观察,在所有这些结果中,[公式:见文本]所属的赫兹空间在某种意义上被证明是最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces
Let [Formula: see text], [Formula: see text] be the mixed-norm Lebesgue space, and [Formula: see text] an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy–Littlewood maximal operator [Formula: see text] from [Formula: see text] to itself or to the weak mixed-norm Lebesgue space [Formula: see text] under some sharp assumptions on [Formula: see text] and [Formula: see text], the authors show that the [Formula: see text]-mean of [Formula: see text] converges to [Formula: see text] almost everywhere over the diagonal if the Fourier transform [Formula: see text] of [Formula: see text] belongs to some mixed-norm homogeneous Herz space [Formula: see text] with [Formula: see text] being the conjugate index of [Formula: see text]. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of [Formula: see text]-means to the unrestricted case. Finally, the authors show that the [Formula: see text]-mean of [Formula: see text] converges over the diagonal to [Formula: see text] at all its [Formula: see text]-Lebesgue points if and only if [Formula: see text] belongs to [Formula: see text], and a similar conclusion also holds true for the unrestricted convergence at strong [Formula: see text]-Lebesgue points. Observe that, in all these results, those Herz spaces to which [Formula: see text] belongs prove to be the best choice in some sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信