{"title":"超音速可压缩颗粒混合层中涡旋形成和颗粒弥散的数值分析","authors":"Assel Beketaeva, Altynshash Naimanova, Gulzana Ashirova","doi":"10.1007/s40571-023-00563-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the study, the quasi 2D-direct numerical simulations (DNS) approach of a supersonic mixing layer of hydrogen–nitrogen flow (upper high-speed) and air (bottom low-speed) with solid particles are performed. Navier–Stokes equations are taken for the multispecies gas phase combined with system of ordinary differential equations for solid particles (Eulerian–Lagrangian approach). Both dynamics of the unsteady vortex system formation and its effect on the solid particles distribution in the mixing layer for two values of the convective Mach number (ratio between the difference of flow velocities and sound speed) low 0.4 and high 0.8, also influence of the various hydrogen and nitrogen mass fractions in the upper flow on the particle dispersion in the mixture layer are studied. The similarity behavior of the particle dispersion for two convective Mach number <i>M</i><sub><i>c</i></sub> is consist, a namely, the particles accumulate around the vortex circle and along the spit between two vortices, which leads to some “empty” area inside the vortex due to the influence of centrifugal force, whereas the local eddy shock wave (shocklets) in the flow is formed for high convective Mach number <i>M</i><sub><i>c</i></sub> and the particle dispersion is not only controlled by turbulent vortex structures but also is complicated due to intersect this local shocklets. That result is in an additional curvature of the particle trajectory in the region shocklets. In addition, the hydrogen mass fraction variations in mixture show that the heavier the mixture, the smaller number of shocklets are formed, respectively, and the thickness of the mixing layer is growth.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1411 - 1429"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of vortex formation and particle dispersion in a supersonic compressible particle-laden mixing layer\",\"authors\":\"Assel Beketaeva, Altynshash Naimanova, Gulzana Ashirova\",\"doi\":\"10.1007/s40571-023-00563-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the study, the quasi 2D-direct numerical simulations (DNS) approach of a supersonic mixing layer of hydrogen–nitrogen flow (upper high-speed) and air (bottom low-speed) with solid particles are performed. Navier–Stokes equations are taken for the multispecies gas phase combined with system of ordinary differential equations for solid particles (Eulerian–Lagrangian approach). Both dynamics of the unsteady vortex system formation and its effect on the solid particles distribution in the mixing layer for two values of the convective Mach number (ratio between the difference of flow velocities and sound speed) low 0.4 and high 0.8, also influence of the various hydrogen and nitrogen mass fractions in the upper flow on the particle dispersion in the mixture layer are studied. The similarity behavior of the particle dispersion for two convective Mach number <i>M</i><sub><i>c</i></sub> is consist, a namely, the particles accumulate around the vortex circle and along the spit between two vortices, which leads to some “empty” area inside the vortex due to the influence of centrifugal force, whereas the local eddy shock wave (shocklets) in the flow is formed for high convective Mach number <i>M</i><sub><i>c</i></sub> and the particle dispersion is not only controlled by turbulent vortex structures but also is complicated due to intersect this local shocklets. That result is in an additional curvature of the particle trajectory in the region shocklets. In addition, the hydrogen mass fraction variations in mixture show that the heavier the mixture, the smaller number of shocklets are formed, respectively, and the thickness of the mixing layer is growth.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"10 5\",\"pages\":\"1411 - 1429\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00563-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00563-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical analysis of vortex formation and particle dispersion in a supersonic compressible particle-laden mixing layer
In the study, the quasi 2D-direct numerical simulations (DNS) approach of a supersonic mixing layer of hydrogen–nitrogen flow (upper high-speed) and air (bottom low-speed) with solid particles are performed. Navier–Stokes equations are taken for the multispecies gas phase combined with system of ordinary differential equations for solid particles (Eulerian–Lagrangian approach). Both dynamics of the unsteady vortex system formation and its effect on the solid particles distribution in the mixing layer for two values of the convective Mach number (ratio between the difference of flow velocities and sound speed) low 0.4 and high 0.8, also influence of the various hydrogen and nitrogen mass fractions in the upper flow on the particle dispersion in the mixture layer are studied. The similarity behavior of the particle dispersion for two convective Mach number Mc is consist, a namely, the particles accumulate around the vortex circle and along the spit between two vortices, which leads to some “empty” area inside the vortex due to the influence of centrifugal force, whereas the local eddy shock wave (shocklets) in the flow is formed for high convective Mach number Mc and the particle dispersion is not only controlled by turbulent vortex structures but also is complicated due to intersect this local shocklets. That result is in an additional curvature of the particle trajectory in the region shocklets. In addition, the hydrogen mass fraction variations in mixture show that the heavier the mixture, the smaller number of shocklets are formed, respectively, and the thickness of the mixing layer is growth.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.