双临界指数Choquard方程的半经典状态:存在性、多重性和集中性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Yujian Su, Zhisu Liu
{"title":"双临界指数Choquard方程的半经典状态:存在性、多重性和集中性","authors":"Yujian Su, Zhisu Liu","doi":"10.3233/asy-221799","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with a class of Choquard equation with the lower and upper critical exponents in the sense of the Hardy–Littlewood–Sobolev inequality. We emphasize that nonlinearities with doubly critical exponents are totally different from the well-known Berestycki–Lions-type ones. Working in a variational setting, we prove the existence, multiplicity and concentration of positive solutions for such equations when the potential satisfies some suitable conditions. We show that the number of positive solutions depends on the profile of the potential and that each solution concentrates around its corresponding global minimum point of the potential in the semi-classical limit.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-classical states for the Choquard equations with doubly critical exponents: Existence, multiplicity and concentration\",\"authors\":\"Yujian Su, Zhisu Liu\",\"doi\":\"10.3233/asy-221799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with a class of Choquard equation with the lower and upper critical exponents in the sense of the Hardy–Littlewood–Sobolev inequality. We emphasize that nonlinearities with doubly critical exponents are totally different from the well-known Berestycki–Lions-type ones. Working in a variational setting, we prove the existence, multiplicity and concentration of positive solutions for such equations when the potential satisfies some suitable conditions. We show that the number of positive solutions depends on the profile of the potential and that each solution concentrates around its corresponding global minimum point of the potential in the semi-classical limit.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-221799\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-221799","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文在Hardy–Littlewood–Sobolev不等式意义上研究了一类具有上下临界指数的Choquard方程。我们强调,具有双临界指数的非线性与众所周知的Berestycki–Lions型非线性完全不同。在变分环境中,我们证明了当势满足某些适当条件时,这类方程正解的存在性、多重性和集中性。我们证明了正解的数量取决于势的轮廓,并且每个解都集中在半经典极限中相应的势的全局极小点附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-classical states for the Choquard equations with doubly critical exponents: Existence, multiplicity and concentration
In this paper, we are concerned with a class of Choquard equation with the lower and upper critical exponents in the sense of the Hardy–Littlewood–Sobolev inequality. We emphasize that nonlinearities with doubly critical exponents are totally different from the well-known Berestycki–Lions-type ones. Working in a variational setting, we prove the existence, multiplicity and concentration of positive solutions for such equations when the potential satisfies some suitable conditions. We show that the number of positive solutions depends on the profile of the potential and that each solution concentrates around its corresponding global minimum point of the potential in the semi-classical limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信