与哈密顿算子相关的Lie代数和Balinsky-Novikov代数的例子

Q3 Mathematics
O. Artemovych, A. Prykarpatski, D. Blackmore
{"title":"与哈密顿算子相关的Lie代数和Balinsky-Novikov代数的例子","authors":"O. Artemovych, A. Prykarpatski, D. Blackmore","doi":"10.1515/taa-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract We study algebraic properties of Poisson brackets on non-associative non-commutative algebras, compatible with their multiplicative structure. Special attention is paid to the Poisson brackets of the Lie-Poisson type, related with the special Lie-structures on the differential-topological torus and brane algebras, generalizing those studied before by Novikov-Balinsky and Gelfand-Dorfman. Illustrative examples of Lie and Balinsky-Novikov algebras are discussed in detail. The non-associative structures (induced by derivation and endomorphism) of commutative algebras related to Lie and Balinsky-Novikov algebras are described in depth.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"6 1","pages":"43 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2018-0005","citationCount":"4","resultStr":"{\"title\":\"Examples of Lie and Balinsky-Novikov algebras related to Hamiltonian operators\",\"authors\":\"O. Artemovych, A. Prykarpatski, D. Blackmore\",\"doi\":\"10.1515/taa-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study algebraic properties of Poisson brackets on non-associative non-commutative algebras, compatible with their multiplicative structure. Special attention is paid to the Poisson brackets of the Lie-Poisson type, related with the special Lie-structures on the differential-topological torus and brane algebras, generalizing those studied before by Novikov-Balinsky and Gelfand-Dorfman. Illustrative examples of Lie and Balinsky-Novikov algebras are discussed in detail. The non-associative structures (induced by derivation and endomorphism) of commutative algebras related to Lie and Balinsky-Novikov algebras are described in depth.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"6 1\",\"pages\":\"43 - 52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2018-0005\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

摘要我们研究了非结合非交换代数上Poisson括号的代数性质,与它们的乘法结构相容。特别注意李-泊松型的泊松括号,它与微分拓扑环面和膜代数上的特殊李结构有关,推广了Novikov Balinsky和Gelfand Dorfman以前的研究。详细讨论了李代数和Balinsky—Novikov代数的例证。深入描述了与李代数和Balinsky—Novikov代数有关的交换代数的非结合结构(由导子和自同态诱导)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of Lie and Balinsky-Novikov algebras related to Hamiltonian operators
Abstract We study algebraic properties of Poisson brackets on non-associative non-commutative algebras, compatible with their multiplicative structure. Special attention is paid to the Poisson brackets of the Lie-Poisson type, related with the special Lie-structures on the differential-topological torus and brane algebras, generalizing those studied before by Novikov-Balinsky and Gelfand-Dorfman. Illustrative examples of Lie and Balinsky-Novikov algebras are discussed in detail. The non-associative structures (induced by derivation and endomorphism) of commutative algebras related to Lie and Balinsky-Novikov algebras are described in depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信