M.H.M. Christianen , A.J.E.M. Janssen , M. Vlasiou , B. Zwart
{"title":"Emden–Fowler型方程的渐近分析及其在潮流模型中的应用","authors":"M.H.M. Christianen , A.J.E.M. Janssen , M. Vlasiou , B. Zwart","doi":"10.1016/j.indag.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Emden–Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden–Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden–Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden–Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden–Fowler type equation that we consider.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"34 5","pages":"Pages 1146-1180"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic analysis of Emden–Fowler type equation with an application to power flow models\",\"authors\":\"M.H.M. Christianen , A.J.E.M. Janssen , M. Vlasiou , B. Zwart\",\"doi\":\"10.1016/j.indag.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emden–Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden–Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden–Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden–Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden–Fowler type equation that we consider.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"34 5\",\"pages\":\"Pages 1146-1180\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357722001021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357722001021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic analysis of Emden–Fowler type equation with an application to power flow models
Emden–Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden–Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden–Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden–Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden–Fowler type equation that we consider.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.