空间多边形模空间几何量子化中的可操作结构

Pub Date : 2021-07-20 DOI:10.2969/jmsj/88548854
Yuya Takahashi
{"title":"空间多边形模空间几何量子化中的可操作结构","authors":"Yuya Takahashi","doi":"10.2969/jmsj/88548854","DOIUrl":null,"url":null,"abstract":"The moduli space of spatial polygons is known as a symplectic manifold equipped with both Kähler and real polarizations. In this paper, associated to the Kähler and real polarizations, morphisms of operads f K ¥ ah and f re are constructed by using the quantum Hilbert spaces ℋ K ¥ ah and ℋ re , respectively. Moreover, the relationship between the two morphisms of operads f K ¥ ah and f re is studied and then the equality dim ℋ K ¥ ah = dim ℋ re is proved in general setting. This operadic framework is regarded as a development of the recurrence relation method by Kamiyama[6] for proving dim ℋ K ¥ ah = dim ℋ re in a special case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operad structures in geometric quantization of the moduli space of spatial polygons\",\"authors\":\"Yuya Takahashi\",\"doi\":\"10.2969/jmsj/88548854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moduli space of spatial polygons is known as a symplectic manifold equipped with both Kähler and real polarizations. In this paper, associated to the Kähler and real polarizations, morphisms of operads f K ¥ ah and f re are constructed by using the quantum Hilbert spaces ℋ K ¥ ah and ℋ re , respectively. Moreover, the relationship between the two morphisms of operads f K ¥ ah and f re is studied and then the equality dim ℋ K ¥ ah = dim ℋ re is proved in general setting. This operadic framework is regarded as a development of the recurrence relation method by Kamiyama[6] for proving dim ℋ K ¥ ah = dim ℋ re in a special case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/88548854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/88548854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间多边形的模空间被称为同时具有Kähler和实极化的辛流形。本文结合Kähler和实极化,利用量子Hilbert空间构造了操纵子f K¥ah和f re的态射ℋ K¥啊和ℋ re。此外,还研究了轻歌剧f K¥ah和f re的两个态射之间的关系,然后给出了等式dimℋ K¥ah=昏暗ℋ re在一般情况下被证明。这个运算框架被Kamiyama[6]认为是递推关系方法的发展,用于证明dimℋ K¥ah=昏暗ℋ We’这是一个特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Operad structures in geometric quantization of the moduli space of spatial polygons
The moduli space of spatial polygons is known as a symplectic manifold equipped with both Kähler and real polarizations. In this paper, associated to the Kähler and real polarizations, morphisms of operads f K ¥ ah and f re are constructed by using the quantum Hilbert spaces ℋ K ¥ ah and ℋ re , respectively. Moreover, the relationship between the two morphisms of operads f K ¥ ah and f re is studied and then the equality dim ℋ K ¥ ah = dim ℋ re is proved in general setting. This operadic framework is regarded as a development of the recurrence relation method by Kamiyama[6] for proving dim ℋ K ¥ ah = dim ℋ re in a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信