C. Jin, Jong-Chan Lim, Min Young Kim, Myung Sik Choi, Sang‐il Kim, S. Baek, Sun-Jae Kim, Seung Yong Lee, Hyun-Sik Kim, Kyu Hyoung Lee
{"title":"WO3纳米结构溶剂热合成中搅拌时间和相应生长机制的影响","authors":"C. Jin, Jong-Chan Lim, Min Young Kim, Myung Sik Choi, Sang‐il Kim, S. Baek, Sun-Jae Kim, Seung Yong Lee, Hyun-Sik Kim, Kyu Hyoung Lee","doi":"10.1080/21870764.2022.2129483","DOIUrl":null,"url":null,"abstract":"ABSTRACT WO3 nanostructures with different morphologies and dimensions were fabricated via solvothermal synthesis by adjusting the stirring time of the precursor solution. Ethanol-based solutions of the WCl6 precursor with various colors (dark green, yellow, white, blue, and blue-black) were prepared, and this triggered a significant change in the growth behavior during the evolution of WO3 nanostructures. Controlling the initial state of the precursors in solution enabled sequential nucleation and growth which resulted in the production of zero-to-three-dimensional nanostructures including nanoparticles, a mixture of nanosheets and nanoparticles, jointed-nanosheets, and three-dimensionally clustered jointed-nanosheets. The crystallographic characteristics (preferred orientation along the (002) plane) and the concentration of surface oxygen vacancies were also controllable, suggesting the formation of nanostructures with tuneable surface reactivity. Differing NO2 sensing performances were observed because of the variation in configurations of the WO3 nanostructures.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"10 1","pages":"779 - 787"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of stirring time and the corresponding growth mechanism in the solvothermal synthesis of WO3 nanostructures\",\"authors\":\"C. Jin, Jong-Chan Lim, Min Young Kim, Myung Sik Choi, Sang‐il Kim, S. Baek, Sun-Jae Kim, Seung Yong Lee, Hyun-Sik Kim, Kyu Hyoung Lee\",\"doi\":\"10.1080/21870764.2022.2129483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT WO3 nanostructures with different morphologies and dimensions were fabricated via solvothermal synthesis by adjusting the stirring time of the precursor solution. Ethanol-based solutions of the WCl6 precursor with various colors (dark green, yellow, white, blue, and blue-black) were prepared, and this triggered a significant change in the growth behavior during the evolution of WO3 nanostructures. Controlling the initial state of the precursors in solution enabled sequential nucleation and growth which resulted in the production of zero-to-three-dimensional nanostructures including nanoparticles, a mixture of nanosheets and nanoparticles, jointed-nanosheets, and three-dimensionally clustered jointed-nanosheets. The crystallographic characteristics (preferred orientation along the (002) plane) and the concentration of surface oxygen vacancies were also controllable, suggesting the formation of nanostructures with tuneable surface reactivity. Differing NO2 sensing performances were observed because of the variation in configurations of the WO3 nanostructures.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"10 1\",\"pages\":\"779 - 787\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2022.2129483\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2129483","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Impact of stirring time and the corresponding growth mechanism in the solvothermal synthesis of WO3 nanostructures
ABSTRACT WO3 nanostructures with different morphologies and dimensions were fabricated via solvothermal synthesis by adjusting the stirring time of the precursor solution. Ethanol-based solutions of the WCl6 precursor with various colors (dark green, yellow, white, blue, and blue-black) were prepared, and this triggered a significant change in the growth behavior during the evolution of WO3 nanostructures. Controlling the initial state of the precursors in solution enabled sequential nucleation and growth which resulted in the production of zero-to-three-dimensional nanostructures including nanoparticles, a mixture of nanosheets and nanoparticles, jointed-nanosheets, and three-dimensionally clustered jointed-nanosheets. The crystallographic characteristics (preferred orientation along the (002) plane) and the concentration of surface oxygen vacancies were also controllable, suggesting the formation of nanostructures with tuneable surface reactivity. Differing NO2 sensing performances were observed because of the variation in configurations of the WO3 nanostructures.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.