P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, Théo Mary, Bastien Vieublé
{"title":"稀疏近似分解与混合精度迭代细化的结合","authors":"P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, Théo Mary, Bastien Vieublé","doi":"10.1145/3582493","DOIUrl":null,"url":null,"abstract":"The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"49 1","pages":"1 - 29"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Combining Sparse Approximate Factorizations with Mixed-precision Iterative Refinement\",\"authors\":\"P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, Théo Mary, Bastien Vieublé\",\"doi\":\"10.1145/3582493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"49 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3582493\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3582493","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Combining Sparse Approximate Factorizations with Mixed-precision Iterative Refinement
The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.