在组图上绘制火车轨道图

Pub Date : 2021-02-04 DOI:10.4171/ggd/698
Rylee Alanza Lyman
{"title":"在组图上绘制火车轨道图","authors":"Rylee Alanza Lyman","doi":"10.4171/ggd/698","DOIUrl":null,"url":null,"abstract":"In this paper we develop the theory of train track maps on graphs of groups. Ex-panding a definition of Bass, we define a notion of a map of a graph of groups, and of a homotopy equivalence. We prove that under one of two technical hypotheses, any homotopy equivalence of a graph of groups may be represented by a relative train track map. The first applies in particular to graphs of groups with finite edge groups, while the second applies in particular to certain generalized Baumslag–Solitar groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Train track maps on graphs of groups\",\"authors\":\"Rylee Alanza Lyman\",\"doi\":\"10.4171/ggd/698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop the theory of train track maps on graphs of groups. Ex-panding a definition of Bass, we define a notion of a map of a graph of groups, and of a homotopy equivalence. We prove that under one of two technical hypotheses, any homotopy equivalence of a graph of groups may be represented by a relative train track map. The first applies in particular to graphs of groups with finite edge groups, while the second applies in particular to certain generalized Baumslag–Solitar groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文在群图上发展了列车轨道图的理论。在推广Bass的定义时,我们定义了群图的映射和同伦等价的概念。我们证明了在两个技术假设中的一个条件下,群图的任何同伦等价都可以用相对的列车轨道图来表示。第一种方法特别适用于具有有限边群的群的图,而第二种方法特别应用于某些广义Baumslag–Solitar群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Train track maps on graphs of groups
In this paper we develop the theory of train track maps on graphs of groups. Ex-panding a definition of Bass, we define a notion of a map of a graph of groups, and of a homotopy equivalence. We prove that under one of two technical hypotheses, any homotopy equivalence of a graph of groups may be represented by a relative train track map. The first applies in particular to graphs of groups with finite edge groups, while the second applies in particular to certain generalized Baumslag–Solitar groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信