稀疏矩阵多项式指定特征对的后向误差分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sk. Safique Ahmad, Prince Kanhya
{"title":"稀疏矩阵多项式指定特征对的后向误差分析","authors":"Sk. Safique Ahmad, Prince Kanhya","doi":"10.1002/nla.2476","DOIUrl":null,"url":null,"abstract":"This article studies the unstructured and structured backward error analysis of specified eigenpairs for matrix polynomials. The structures we discuss include T$$ T $$ ‐symmetric, T$$ T $$ ‐skew‐symmetric, Hermitian, skew Hermitian, T$$ T $$ ‐even, T$$ T $$ ‐odd, H$$ H $$ ‐even, H$$ H $$ ‐odd, T$$ T $$ ‐palindromic, T$$ T $$ ‐anti‐palindromic, H$$ H $$ ‐palindromic, and H$$ H $$ ‐anti‐palindromic matrix polynomials. Minimally structured perturbations are constructed with respect to Frobenius norm such that specified eigenpairs become exact eigenpairs of an appropriately perturbed matrix polynomial that also preserves sparsity. Further, we have used our results to solve various quadratic inverse eigenvalue problems that arise from real‐life applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward error analysis of specified eigenpairs for sparse matrix polynomials\",\"authors\":\"Sk. Safique Ahmad, Prince Kanhya\",\"doi\":\"10.1002/nla.2476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the unstructured and structured backward error analysis of specified eigenpairs for matrix polynomials. The structures we discuss include T$$ T $$ ‐symmetric, T$$ T $$ ‐skew‐symmetric, Hermitian, skew Hermitian, T$$ T $$ ‐even, T$$ T $$ ‐odd, H$$ H $$ ‐even, H$$ H $$ ‐odd, T$$ T $$ ‐palindromic, T$$ T $$ ‐anti‐palindromic, H$$ H $$ ‐palindromic, and H$$ H $$ ‐anti‐palindromic matrix polynomials. Minimally structured perturbations are constructed with respect to Frobenius norm such that specified eigenpairs become exact eigenpairs of an appropriately perturbed matrix polynomial that also preserves sparsity. Further, we have used our results to solve various quadratic inverse eigenvalue problems that arise from real‐life applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2476\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了矩阵多项式指定特征对的非结构化和结构化后向误差分析。我们讨论的结构包括T $$ T $$对称、T $$ T $$偏对称、hermite、skew hermite、T $$ T $$偶、T $$ T $$奇、H $$ H $$偶、H $$ H $$奇、T $$ T $$回文、T $$ T $$反回文、H $$ H $$回文和H $$ H $$反回文矩阵多项式。基于Frobenius范数构造了最小结构摄动,使得指定的特征对成为适当摄动的矩阵多项式的精确特征对,并且保持了稀疏性。此外,我们已经使用我们的结果来解决实际应用中出现的各种二次型反特征值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backward error analysis of specified eigenpairs for sparse matrix polynomials
This article studies the unstructured and structured backward error analysis of specified eigenpairs for matrix polynomials. The structures we discuss include T$$ T $$ ‐symmetric, T$$ T $$ ‐skew‐symmetric, Hermitian, skew Hermitian, T$$ T $$ ‐even, T$$ T $$ ‐odd, H$$ H $$ ‐even, H$$ H $$ ‐odd, T$$ T $$ ‐palindromic, T$$ T $$ ‐anti‐palindromic, H$$ H $$ ‐palindromic, and H$$ H $$ ‐anti‐palindromic matrix polynomials. Minimally structured perturbations are constructed with respect to Frobenius norm such that specified eigenpairs become exact eigenpairs of an appropriately perturbed matrix polynomial that also preserves sparsity. Further, we have used our results to solve various quadratic inverse eigenvalue problems that arise from real‐life applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信