{"title":"木霉属真菌对阿根廷小苍兰冬季开花的影响","authors":"B. Janowska, R. Andrzejak, T. Kosiada","doi":"10.17221/35/2019-hortsci","DOIUrl":null,"url":null,"abstract":"The flowering and quality of Freesia refracta Klatt ‘Argentea’ were assessed after the application of fungi of the Trichoderma genus and assimilation lighting. The assimilation lighting accelerated the flowering of the Freesia refracta ‘Argentea’ plants by 3–4 weeks. The fungi of the Trichoderma genus accelerated the flowering of the Freesia refracta ‘Argentea’ plants with light deficit by about one week. The assimilation lighting resulted in the development of shorter main inflorescence shoots regardless of the fact whether the plants had been treated with the fungi of the Trichoderma genus or not. The assimilation lighting and the fungi of the Trichoderma genus stimulated the development of lateral inflorescence shoots in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the development of flowers in the ‘Argentea’ cultivar. This effect was particularly noticeable when the plants were exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of potassium in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the uptake of phosphorus and calcium in the plants underexposed to light. They also stimulated the uptake of potassium in the plants exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of microelements. The fungi of the Trichoderma genus stimulated the uptake of iron, manganese and zinc both in the plants exposed to the assimilation lighting and those underexposed to light. The assimilation lighting combined with the treatment with the fungi of the Trichoderma genus stimulated the uptake of copper.","PeriodicalId":13110,"journal":{"name":"Horticultural Science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The influence of fungi of the Trichoderma genus on the flowering of Freesia refracta Klatt ‘Argentea’ in winter\",\"authors\":\"B. Janowska, R. Andrzejak, T. Kosiada\",\"doi\":\"10.17221/35/2019-hortsci\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flowering and quality of Freesia refracta Klatt ‘Argentea’ were assessed after the application of fungi of the Trichoderma genus and assimilation lighting. The assimilation lighting accelerated the flowering of the Freesia refracta ‘Argentea’ plants by 3–4 weeks. The fungi of the Trichoderma genus accelerated the flowering of the Freesia refracta ‘Argentea’ plants with light deficit by about one week. The assimilation lighting resulted in the development of shorter main inflorescence shoots regardless of the fact whether the plants had been treated with the fungi of the Trichoderma genus or not. The assimilation lighting and the fungi of the Trichoderma genus stimulated the development of lateral inflorescence shoots in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the development of flowers in the ‘Argentea’ cultivar. This effect was particularly noticeable when the plants were exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of potassium in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the uptake of phosphorus and calcium in the plants underexposed to light. They also stimulated the uptake of potassium in the plants exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of microelements. The fungi of the Trichoderma genus stimulated the uptake of iron, manganese and zinc both in the plants exposed to the assimilation lighting and those underexposed to light. The assimilation lighting combined with the treatment with the fungi of the Trichoderma genus stimulated the uptake of copper.\",\"PeriodicalId\":13110,\"journal\":{\"name\":\"Horticultural Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/35/2019-hortsci\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/35/2019-hortsci","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
The influence of fungi of the Trichoderma genus on the flowering of Freesia refracta Klatt ‘Argentea’ in winter
The flowering and quality of Freesia refracta Klatt ‘Argentea’ were assessed after the application of fungi of the Trichoderma genus and assimilation lighting. The assimilation lighting accelerated the flowering of the Freesia refracta ‘Argentea’ plants by 3–4 weeks. The fungi of the Trichoderma genus accelerated the flowering of the Freesia refracta ‘Argentea’ plants with light deficit by about one week. The assimilation lighting resulted in the development of shorter main inflorescence shoots regardless of the fact whether the plants had been treated with the fungi of the Trichoderma genus or not. The assimilation lighting and the fungi of the Trichoderma genus stimulated the development of lateral inflorescence shoots in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the development of flowers in the ‘Argentea’ cultivar. This effect was particularly noticeable when the plants were exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of potassium in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the uptake of phosphorus and calcium in the plants underexposed to light. They also stimulated the uptake of potassium in the plants exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of microelements. The fungi of the Trichoderma genus stimulated the uptake of iron, manganese and zinc both in the plants exposed to the assimilation lighting and those underexposed to light. The assimilation lighting combined with the treatment with the fungi of the Trichoderma genus stimulated the uptake of copper.
期刊介绍:
The journal publishes results of basic and applied research from all areas of horticulture, fruit-growing, vegetable-growing, wine-making and viticulture, floriculture, ornamental gardening, garden and landscape architecture, concerning plants that are grown under the conditions of European temperate zone, or field plants that are considered as horticultural cultures. Original scientific papers, short communications and review articles are published in the journal. Papers are published in English (British spelling).