聚乙烯醇复合碳纤维透明导电远红外辐射膜应用于农业温室

IF 1.8 Q2 AGRICULTURE, MULTIDISCIPLINARY
Bei Wang, Tzer Hwai Gilbert Thio, Hock Siong Chong
{"title":"聚乙烯醇复合碳纤维透明导电远红外辐射膜应用于农业温室","authors":"Bei Wang, Tzer Hwai Gilbert Thio, Hock Siong Chong","doi":"10.1515/opag-2022-0139","DOIUrl":null,"url":null,"abstract":"Abstract In this study, a transparent conductive film is developed using polyvinyl alcohol as the substrate material and carbon fiber is deposited for electrical conductivity. The two materials are mixed into a solution and then cast to form a transparent conductive film suitable for usage in agricultural greenhouses. The designed film with a dimension of 200 mm × 200 mm has an average edge-to-edge resistance of 560.87 + 118.17 Ω, block resistance (BR) of 1.4 + 0.29 Ω/cm2, light transmittance of 70.07% over a wavelength of 400 to 780 nm, and a heating capability of 72 W/m2 via far-infrared light over a wavelength of 25–1,000 µm. Being highly transparent, the film can be integrated into the structure of agricultural greenhouses as it allows adequate sunlight penetration for the necessary photosynthesis of crops while providing heating capability during cold climates in seasonal regions such as northern China, thus replacing the need for conventional electrical heaters. A proof-of-concept is conducted at an agricultural greenhouse in Shandong, China, in rural settings where electricity may not be available. The films were powered with 200 custom-made aluminum-air (Al-air) batteries rated for 12 V, 20 mA. The electrolyte used for the batteries is potassium sulfate (K2SO4), which is a kind of agricultural chemical fertilizer that is easily available in agricultural greenhouse settings. For 7 weeks, the films were successfully powered by the batteries and operated to provide constant heating to maintain the nighttime temperature inside the greenhouse at above 10.06°C with outside temperatures dropping as low as 3.8°C.","PeriodicalId":45740,"journal":{"name":"Open Agriculture","volume":"7 1","pages":"733 - 748"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transparent conductive far-infrared radiative film based on polyvinyl alcohol with carbon fiber apply in agriculture greenhouse\",\"authors\":\"Bei Wang, Tzer Hwai Gilbert Thio, Hock Siong Chong\",\"doi\":\"10.1515/opag-2022-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, a transparent conductive film is developed using polyvinyl alcohol as the substrate material and carbon fiber is deposited for electrical conductivity. The two materials are mixed into a solution and then cast to form a transparent conductive film suitable for usage in agricultural greenhouses. The designed film with a dimension of 200 mm × 200 mm has an average edge-to-edge resistance of 560.87 + 118.17 Ω, block resistance (BR) of 1.4 + 0.29 Ω/cm2, light transmittance of 70.07% over a wavelength of 400 to 780 nm, and a heating capability of 72 W/m2 via far-infrared light over a wavelength of 25–1,000 µm. Being highly transparent, the film can be integrated into the structure of agricultural greenhouses as it allows adequate sunlight penetration for the necessary photosynthesis of crops while providing heating capability during cold climates in seasonal regions such as northern China, thus replacing the need for conventional electrical heaters. A proof-of-concept is conducted at an agricultural greenhouse in Shandong, China, in rural settings where electricity may not be available. The films were powered with 200 custom-made aluminum-air (Al-air) batteries rated for 12 V, 20 mA. The electrolyte used for the batteries is potassium sulfate (K2SO4), which is a kind of agricultural chemical fertilizer that is easily available in agricultural greenhouse settings. For 7 weeks, the films were successfully powered by the batteries and operated to provide constant heating to maintain the nighttime temperature inside the greenhouse at above 10.06°C with outside temperatures dropping as low as 3.8°C.\",\"PeriodicalId\":45740,\"journal\":{\"name\":\"Open Agriculture\",\"volume\":\"7 1\",\"pages\":\"733 - 748\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/opag-2022-0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/opag-2022-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究以聚乙烯醇为基材,在碳纤维表面沉积导电性能良好的透明导电膜。将这两种材料混合成溶液,然后浇铸形成一种透明的导电薄膜,适用于农业大棚。设计的薄膜尺寸为200 mm × 200 mm,平均边沿电阻为560.87 + 118.17 Ω,块电阻(BR)为1.4 + 0.29 Ω/cm2,在400 ~ 780 nm波长范围内的透光率为70.07%,在25 ~ 1000µm波长范围内的远红外光加热能力为72 W/m2。这种薄膜是高度透明的,它可以集成到农业温室的结构中,因为它允许足够的阳光穿透作物进行必要的光合作用,同时在寒冷的季节地区(如中国北方)提供加热能力,从而取代了对传统电加热器的需求。在中国山东的一个农业温室进行了概念验证,那里可能没有电力供应。这些薄膜由200个定制的铝空气(Al-air)电池供电,额定电压为12 V, 20 mA。电池使用的电解质是硫酸钾(K2SO4),这是一种农业化肥,在农业温室环境中很容易获得。在7周的时间里,薄膜成功地由电池供电,并提供持续的加热,使温室内的夜间温度保持在10.06°C以上,室外温度低至3.8°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent conductive far-infrared radiative film based on polyvinyl alcohol with carbon fiber apply in agriculture greenhouse
Abstract In this study, a transparent conductive film is developed using polyvinyl alcohol as the substrate material and carbon fiber is deposited for electrical conductivity. The two materials are mixed into a solution and then cast to form a transparent conductive film suitable for usage in agricultural greenhouses. The designed film with a dimension of 200 mm × 200 mm has an average edge-to-edge resistance of 560.87 + 118.17 Ω, block resistance (BR) of 1.4 + 0.29 Ω/cm2, light transmittance of 70.07% over a wavelength of 400 to 780 nm, and a heating capability of 72 W/m2 via far-infrared light over a wavelength of 25–1,000 µm. Being highly transparent, the film can be integrated into the structure of agricultural greenhouses as it allows adequate sunlight penetration for the necessary photosynthesis of crops while providing heating capability during cold climates in seasonal regions such as northern China, thus replacing the need for conventional electrical heaters. A proof-of-concept is conducted at an agricultural greenhouse in Shandong, China, in rural settings where electricity may not be available. The films were powered with 200 custom-made aluminum-air (Al-air) batteries rated for 12 V, 20 mA. The electrolyte used for the batteries is potassium sulfate (K2SO4), which is a kind of agricultural chemical fertilizer that is easily available in agricultural greenhouse settings. For 7 weeks, the films were successfully powered by the batteries and operated to provide constant heating to maintain the nighttime temperature inside the greenhouse at above 10.06°C with outside temperatures dropping as low as 3.8°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Agriculture
Open Agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
3.80
自引率
4.30%
发文量
61
审稿时长
9 weeks
期刊介绍: Open Agriculture is an open access journal that publishes original articles reflecting the latest achievements on agro-ecology, soil science, plant science, horticulture, forestry, wood technology, zootechnics and veterinary medicine, entomology, aquaculture, hydrology, food science, agricultural economics, agricultural engineering, climate-based agriculture, amelioration, social sciences in agriculuture, smart farming technologies, farm management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信