奇异p(x)-拉普拉斯方程的存在性结果

IF 0.5 Q3 MATHEMATICS
R. Alsaedi, K. Ali, A. Ghanmi
{"title":"奇异p(x)-拉普拉斯方程的存在性结果","authors":"R. Alsaedi, K. Ali, A. Ghanmi","doi":"10.21494/iste.op.2022.0840","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of solutions for the following class of singular fourth order elliptic equations { Δ ( |x|p(x)|Δu|p(x)−2Δu ) = a(x)u−γ(x) + λf(x, u), in Ω, u = Δu = 0, on ∂Ω. where Ω is a smooth bounded domain in R , γ : Ω → (0, 1) be a continuous function, f ∈ C(Ω × R), p : Ω −→ (1,∞) and a is a function that is almost everywhere positive in Ω . Using variational techniques combined with the theory of the generalized Lebesgue-Sobolev spaces, we prove the existence at least one nontrivial weak solution. 2020 Mathematics Subject Classification. 46E35,26A45,28A12.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence Results for Singular p(x)-Laplacian Equation\",\"authors\":\"R. Alsaedi, K. Ali, A. Ghanmi\",\"doi\":\"10.21494/iste.op.2022.0840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of solutions for the following class of singular fourth order elliptic equations { Δ ( |x|p(x)|Δu|p(x)−2Δu ) = a(x)u−γ(x) + λf(x, u), in Ω, u = Δu = 0, on ∂Ω. where Ω is a smooth bounded domain in R , γ : Ω → (0, 1) be a continuous function, f ∈ C(Ω × R), p : Ω −→ (1,∞) and a is a function that is almost everywhere positive in Ω . Using variational techniques combined with the theory of the generalized Lebesgue-Sobolev spaces, we prove the existence at least one nontrivial weak solution. 2020 Mathematics Subject Classification. 46E35,26A45,28A12.\",\"PeriodicalId\":43512,\"journal\":{\"name\":\"Advances in Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2022.0840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2022.0840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类奇异四阶椭圆型方程{Δ(|x|p(x)|Δu|p(x)−2Δu)=a(x)uγ(x)+λf(x,u),在Ω上,u=Δu=0,在ΓΩ上解的存在性,其中Ω是R中的光滑有界域,γ:Ω→ (0,1)是连续函数,f∈C(Ω×R),p:Ω−→ (1,∞),并且a是Ω中几乎处处为正的函数。利用变分技术,结合广义Lebesgue-Sobolev空间的理论,证明了至少一个非平凡弱解的存在性。2020数学学科分类。46E35,26A45,28A12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence Results for Singular p(x)-Laplacian Equation
This paper is concerned with the existence of solutions for the following class of singular fourth order elliptic equations { Δ ( |x|p(x)|Δu|p(x)−2Δu ) = a(x)u−γ(x) + λf(x, u), in Ω, u = Δu = 0, on ∂Ω. where Ω is a smooth bounded domain in R , γ : Ω → (0, 1) be a continuous function, f ∈ C(Ω × R), p : Ω −→ (1,∞) and a is a function that is almost everywhere positive in Ω . Using variational techniques combined with the theory of the generalized Lebesgue-Sobolev spaces, we prove the existence at least one nontrivial weak solution. 2020 Mathematics Subject Classification. 46E35,26A45,28A12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信