{"title":"加权同步自动机","authors":"Leandro Gomes, A. Madeira, L. Barbosa","doi":"10.1017/S0960129522000421","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a class of automata and associated languages, suitable to model a computational paradigm of fuzzy systems, in which both vagueness and simultaneity are taken as first-class citizens. This requires a weighted semantics for transitions and a precise notion of a synchronous product to enforce the simultaneous occurrence of actions. The usual relationships between automata and languages are revisited in this setting, including a specific Kleene theorem.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"32 1","pages":"1234 - 1253"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted synchronous automata\",\"authors\":\"Leandro Gomes, A. Madeira, L. Barbosa\",\"doi\":\"10.1017/S0960129522000421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a class of automata and associated languages, suitable to model a computational paradigm of fuzzy systems, in which both vagueness and simultaneity are taken as first-class citizens. This requires a weighted semantics for transitions and a precise notion of a synchronous product to enforce the simultaneous occurrence of actions. The usual relationships between automata and languages are revisited in this setting, including a specific Kleene theorem.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"32 1\",\"pages\":\"1234 - 1253\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129522000421\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129522000421","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract This paper introduces a class of automata and associated languages, suitable to model a computational paradigm of fuzzy systems, in which both vagueness and simultaneity are taken as first-class citizens. This requires a weighted semantics for transitions and a precise notion of a synchronous product to enforce the simultaneous occurrence of actions. The usual relationships between automata and languages are revisited in this setting, including a specific Kleene theorem.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.