随机格方程的同步与吸引子的上半连续性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
H. Bessaih, M. Garrido-Atienza, Verena Köpp, B. Schmalfuß
{"title":"随机格方程的同步与吸引子的上半连续性","authors":"H. Bessaih, M. Garrido-Atienza, Verena Köpp, B. Schmalfuß","doi":"10.1080/07362994.2021.1981383","DOIUrl":null,"url":null,"abstract":"Abstract We consider a system of two coupled stochastic lattice equations driven by additive white noise processes, where the strength of the coupling is given by a parameter We show that these equations generate a random dynamical system which has a random pullback attractor. This attractor naturally depends on the parameter κ. When the intensity of the coupling becomes large, we observe that the components of the given system synchronize. To describe this phenomenon, we prove the upper semicontinuity of the family of attractors with respect to the attractor of a specific limiting system.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"40 1","pages":"1067 - 1103"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synchronization of stochastic lattice equations and upper semicontinuity of attractors\",\"authors\":\"H. Bessaih, M. Garrido-Atienza, Verena Köpp, B. Schmalfuß\",\"doi\":\"10.1080/07362994.2021.1981383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a system of two coupled stochastic lattice equations driven by additive white noise processes, where the strength of the coupling is given by a parameter We show that these equations generate a random dynamical system which has a random pullback attractor. This attractor naturally depends on the parameter κ. When the intensity of the coupling becomes large, we observe that the components of the given system synchronize. To describe this phenomenon, we prove the upper semicontinuity of the family of attractors with respect to the attractor of a specific limiting system.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"40 1\",\"pages\":\"1067 - 1103\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.1981383\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1981383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们考虑一个由加性白噪声过程驱动的两个耦合随机晶格方程组,其中耦合强度由一个参数给出。我们证明了这些方程组生成了一个具有随机回调吸引子的随机动力学系统。这个吸引子自然地依赖于参数κ。当耦合强度变大时,我们观察到给定系统的组件同步。为了描述这一现象,我们证明了吸引子族相对于特定极限系统的吸引子的上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of stochastic lattice equations and upper semicontinuity of attractors
Abstract We consider a system of two coupled stochastic lattice equations driven by additive white noise processes, where the strength of the coupling is given by a parameter We show that these equations generate a random dynamical system which has a random pullback attractor. This attractor naturally depends on the parameter κ. When the intensity of the coupling becomes large, we observe that the components of the given system synchronize. To describe this phenomenon, we prove the upper semicontinuity of the family of attractors with respect to the attractor of a specific limiting system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信