A. Joshi, Deepak Ranjan Nayak, Dibyasundar Das, Yudong Zhang
{"title":"LiMS-Net:用于胸部CT扫描检测新冠肺炎的轻量级多尺度CNN","authors":"A. Joshi, Deepak Ranjan Nayak, Dibyasundar Das, Yudong Zhang","doi":"10.1145/3551647","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed a rise in employing deep learning methods, especially convolutional neural networks (CNNs) for detection of COVID-19 cases using chest CT scans. Most of the state-of-the-art models demand a huge amount of parameters which often suffer from overfitting in the presence of limited training samples such as chest CT data and thereby, reducing the detection performance. To handle these issues, in this paper, a lightweight multi-scale CNN called LiMS-Net is proposed. The LiMS-Net contains two feature learning blocks where, in each block, filters of different sizes are applied in parallel to derive multi-scale features from the suspicious regions and an additional filter is subsequently employed to capture discriminant features. The model has only 2.53M parameters and therefore, requires low computational cost and memory space when compared to pretrained CNN architectures. Comprehensive experiments are carried out using a publicly available COVID-19 CT dataset and the results demonstrate that the proposed model achieves higher performance than many pretrained CNN models and state-of-the-art methods even in the presence of limited CT data. Our model achieves an accuracy of 92.11% and an F1-score of 92.59% for detection of COVID-19 from CT scans. Further, the results on a relatively larger CT dataset indicate the effectiveness of the proposed model.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"LiMS-Net: A Lightweight Multi-Scale CNN for COVID-19 Detection from Chest CT Scans\",\"authors\":\"A. Joshi, Deepak Ranjan Nayak, Dibyasundar Das, Yudong Zhang\",\"doi\":\"10.1145/3551647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed a rise in employing deep learning methods, especially convolutional neural networks (CNNs) for detection of COVID-19 cases using chest CT scans. Most of the state-of-the-art models demand a huge amount of parameters which often suffer from overfitting in the presence of limited training samples such as chest CT data and thereby, reducing the detection performance. To handle these issues, in this paper, a lightweight multi-scale CNN called LiMS-Net is proposed. The LiMS-Net contains two feature learning blocks where, in each block, filters of different sizes are applied in parallel to derive multi-scale features from the suspicious regions and an additional filter is subsequently employed to capture discriminant features. The model has only 2.53M parameters and therefore, requires low computational cost and memory space when compared to pretrained CNN architectures. Comprehensive experiments are carried out using a publicly available COVID-19 CT dataset and the results demonstrate that the proposed model achieves higher performance than many pretrained CNN models and state-of-the-art methods even in the presence of limited CT data. Our model achieves an accuracy of 92.11% and an F1-score of 92.59% for detection of COVID-19 from CT scans. Further, the results on a relatively larger CT dataset indicate the effectiveness of the proposed model.\",\"PeriodicalId\":45274,\"journal\":{\"name\":\"ACM Transactions on Management Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Management Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LiMS-Net: A Lightweight Multi-Scale CNN for COVID-19 Detection from Chest CT Scans
Recent years have witnessed a rise in employing deep learning methods, especially convolutional neural networks (CNNs) for detection of COVID-19 cases using chest CT scans. Most of the state-of-the-art models demand a huge amount of parameters which often suffer from overfitting in the presence of limited training samples such as chest CT data and thereby, reducing the detection performance. To handle these issues, in this paper, a lightweight multi-scale CNN called LiMS-Net is proposed. The LiMS-Net contains two feature learning blocks where, in each block, filters of different sizes are applied in parallel to derive multi-scale features from the suspicious regions and an additional filter is subsequently employed to capture discriminant features. The model has only 2.53M parameters and therefore, requires low computational cost and memory space when compared to pretrained CNN architectures. Comprehensive experiments are carried out using a publicly available COVID-19 CT dataset and the results demonstrate that the proposed model achieves higher performance than many pretrained CNN models and state-of-the-art methods even in the presence of limited CT data. Our model achieves an accuracy of 92.11% and an F1-score of 92.59% for detection of COVID-19 from CT scans. Further, the results on a relatively larger CT dataset indicate the effectiveness of the proposed model.