一种基于萤火虫算法的结构拓扑优化混合方法

IF 2 Q3 MECHANICS
Hailu Shimels Gebremedhen, D. Woldemichael, F. M. Hashim
{"title":"一种基于萤火虫算法的结构拓扑优化混合方法","authors":"Hailu Shimels Gebremedhen, D. Woldemichael, F. M. Hashim","doi":"10.21203/rs.3.rs-34017/v1","DOIUrl":null,"url":null,"abstract":"In this paper, a firefly algorithm based hybrid algorithm through retaining global convergence of firefly algorithm and ability to generate connected topologies of optimality criteria (OC) method is proposed as an alternative method to solve stress-based topology optimization problems. The lower and upper limit of design variables (0 and 1) were used to find initial material distribution to initialize the firefly algorithm based section of the hybrid algorithm. Input parameters, the number of fireflies, and the number of function evaluations were determined before the implementation of the firefly algorithm to solve formulated problems. Since the direct application of the firefly algorithm cannot generate connected topologies, outputs from the firefly algorithm were used as an initial input material distribution for the OC method. The proposed method was validated using two-dimensional benchmark problems and the results were compared with results using the OC method. Weight percentage reduction, maximum stress-induced, optimal material distribution, and compliance were used to compare results. Results from the proposed method showed that the proposed method can generate connected topologies which are free from the interference of end-users, and only depend on boundary conditions or design variables. From the results, the objective function (weight of the design domain) can be further reduced in the range of 5 to 15% compared to the OC method.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A firefly algorithm based hybrid method for structural topology optimization\",\"authors\":\"Hailu Shimels Gebremedhen, D. Woldemichael, F. M. Hashim\",\"doi\":\"10.21203/rs.3.rs-34017/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a firefly algorithm based hybrid algorithm through retaining global convergence of firefly algorithm and ability to generate connected topologies of optimality criteria (OC) method is proposed as an alternative method to solve stress-based topology optimization problems. The lower and upper limit of design variables (0 and 1) were used to find initial material distribution to initialize the firefly algorithm based section of the hybrid algorithm. Input parameters, the number of fireflies, and the number of function evaluations were determined before the implementation of the firefly algorithm to solve formulated problems. Since the direct application of the firefly algorithm cannot generate connected topologies, outputs from the firefly algorithm were used as an initial input material distribution for the OC method. The proposed method was validated using two-dimensional benchmark problems and the results were compared with results using the OC method. Weight percentage reduction, maximum stress-induced, optimal material distribution, and compliance were used to compare results. Results from the proposed method showed that the proposed method can generate connected topologies which are free from the interference of end-users, and only depend on boundary conditions or design variables. From the results, the objective function (weight of the design domain) can be further reduced in the range of 5 to 15% compared to the OC method.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-34017/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-34017/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于萤火虫算法的混合算法,它保留了萤火虫算法的全局收敛性和最优性准则(OC)方法的连通拓扑生成能力,作为解决基于应力的拓扑优化问题的替代方法。利用设计变量(0和1)的上下限寻找初始材料分布,初始化混合算法中基于萤火虫算法的部分。在萤火虫算法求解公式化问题之前,确定了输入参数、萤火虫数量和函数评估次数。由于直接应用萤火虫算法无法生成连通拓扑,因此将萤火虫算法的输出作为OC方法的初始输入材料分布。利用二维基准问题对该方法进行了验证,并与OC方法的结果进行了比较。重量百分比减少,最大应力诱导,最佳材料分布和顺应性用于比较结果。结果表明,该方法可以生成不受终端用户干扰、仅依赖于边界条件或设计变量的连通拓扑。从结果来看,与OC方法相比,目标函数(设计域的权重)可以进一步减小5 - 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A firefly algorithm based hybrid method for structural topology optimization
In this paper, a firefly algorithm based hybrid algorithm through retaining global convergence of firefly algorithm and ability to generate connected topologies of optimality criteria (OC) method is proposed as an alternative method to solve stress-based topology optimization problems. The lower and upper limit of design variables (0 and 1) were used to find initial material distribution to initialize the firefly algorithm based section of the hybrid algorithm. Input parameters, the number of fireflies, and the number of function evaluations were determined before the implementation of the firefly algorithm to solve formulated problems. Since the direct application of the firefly algorithm cannot generate connected topologies, outputs from the firefly algorithm were used as an initial input material distribution for the OC method. The proposed method was validated using two-dimensional benchmark problems and the results were compared with results using the OC method. Weight percentage reduction, maximum stress-induced, optimal material distribution, and compliance were used to compare results. Results from the proposed method showed that the proposed method can generate connected topologies which are free from the interference of end-users, and only depend on boundary conditions or design variables. From the results, the objective function (weight of the design domain) can be further reduced in the range of 5 to 15% compared to the OC method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信