离散时间Sir流行病模型的输出轨迹可控性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lahbib Benahmadi, M. Lhous, A. Tridane, M. Rachik
{"title":"离散时间Sir流行病模型的输出轨迹可控性","authors":"Lahbib Benahmadi, M. Lhous, A. Tridane, M. Rachik","doi":"10.1051/mmnp/2023015","DOIUrl":null,"url":null,"abstract":"Abstract. Developing new approaches that help control the spread of infectious diseases is a critical issue for public health. Such approaches must consider the available resources and capacity of the healthcare system. In this paper, we present a new mathematical approach to controlling an epidemic model by investigating the optimal control that aims to bring the output of the epidemic to target a desired disease output yd = (yid)i∈{0,...,N}. First, we use the state-space technique to transfer the trajectory controllability to optimal control with constraints on the final state. Then, we use the fixed point theorems to determine the set of admissible controls and solve the output trajectory controllability problem. Finally, we apply our method to the model of a measles epidemic, and we give a numerical simulation to illustrate the findings of our approach.\nMathematics Subject Classification. — Please, give AMS classification codes —.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OUTPUT TRAJECTORY CONTROLLABILITY OF A DISCRETE-TIME SIR EPIDEMIC MODEL\",\"authors\":\"Lahbib Benahmadi, M. Lhous, A. Tridane, M. Rachik\",\"doi\":\"10.1051/mmnp/2023015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Developing new approaches that help control the spread of infectious diseases is a critical issue for public health. Such approaches must consider the available resources and capacity of the healthcare system. In this paper, we present a new mathematical approach to controlling an epidemic model by investigating the optimal control that aims to bring the output of the epidemic to target a desired disease output yd = (yid)i∈{0,...,N}. First, we use the state-space technique to transfer the trajectory controllability to optimal control with constraints on the final state. Then, we use the fixed point theorems to determine the set of admissible controls and solve the output trajectory controllability problem. Finally, we apply our method to the model of a measles epidemic, and we give a numerical simulation to illustrate the findings of our approach.\\nMathematics Subject Classification. — Please, give AMS classification codes —.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2023015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要开发有助于控制传染病传播的新方法是公共卫生的一个关键问题。这种方法必须考虑到现有的资源和卫生保健系统的能力。本文通过研究最优控制问题,提出了一种新的控制流行病模型的数学方法,其目的是使流行病的输出达到目标期望的疾病输出yd = (yid)i∈{0,…,N}。首先,利用状态空间技术将轨迹可控性转化为具有最终状态约束的最优控制。然后,利用不动点定理确定可容许控制集,求解输出轨迹可控性问题。最后,我们将我们的方法应用于麻疹流行模型,并给出了数值模拟来说明我们的方法的发现。数学学科分类。-请给出AMS分类代码-。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OUTPUT TRAJECTORY CONTROLLABILITY OF A DISCRETE-TIME SIR EPIDEMIC MODEL
Abstract. Developing new approaches that help control the spread of infectious diseases is a critical issue for public health. Such approaches must consider the available resources and capacity of the healthcare system. In this paper, we present a new mathematical approach to controlling an epidemic model by investigating the optimal control that aims to bring the output of the epidemic to target a desired disease output yd = (yid)i∈{0,...,N}. First, we use the state-space technique to transfer the trajectory controllability to optimal control with constraints on the final state. Then, we use the fixed point theorems to determine the set of admissible controls and solve the output trajectory controllability problem. Finally, we apply our method to the model of a measles epidemic, and we give a numerical simulation to illustrate the findings of our approach. Mathematics Subject Classification. — Please, give AMS classification codes —.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信