{"title":"关于具有非凸核记忆的Moore-Gibson-Thompson方程","authors":"M. Conti, L. Liverani, V. Pata","doi":"10.1512/iumj.2023.72.9330","DOIUrl":null,"url":null,"abstract":"We consider the MGT equation with memory $$\\partial_{ttt} u + \\alpha \\partial_{tt} u - \\beta \\Delta \\partial_{t} u - \\gamma\\Delta u + \\int_{0}^{t}g(s) \\Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel $g$, usually adopted in the literature. In the subcritical case $\\alpha\\beta>\\gamma$, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving $g$ and its derivative $g'$, namely, $$g'+\\delta g\\leq 0,\\quad\\delta>0,$$ but only asking that $g$ vanishes exponentially fast.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Moore-Gibson-Thompson equation with memory with nonconvex kernels\",\"authors\":\"M. Conti, L. Liverani, V. Pata\",\"doi\":\"10.1512/iumj.2023.72.9330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the MGT equation with memory $$\\\\partial_{ttt} u + \\\\alpha \\\\partial_{tt} u - \\\\beta \\\\Delta \\\\partial_{t} u - \\\\gamma\\\\Delta u + \\\\int_{0}^{t}g(s) \\\\Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel $g$, usually adopted in the literature. In the subcritical case $\\\\alpha\\\\beta>\\\\gamma$, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving $g$ and its derivative $g'$, namely, $$g'+\\\\delta g\\\\leq 0,\\\\quad\\\\delta>0,$$ but only asking that $g$ vanishes exponentially fast.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9330\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9330","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
我们考虑有内存的MGT方程$$\partial_{ttt} u + \alpha \partial_{tt} u - \beta \Delta \partial_{t} u - \gamma\Delta u + \int_{0}^{t}g(s) \Delta u(t-s) ds = 0.$$我们证明了一个存在唯一性结果,消除了文献中通常采用的卷积核的凸性假设$g$。在次临界情况$\alpha\beta>\gamma$中,我们建立了能量的指数衰减,而不依赖于涉及$g$及其导数$g'$的经典微分不等式,即$$g'+\delta g\leq 0,\quad\delta>0,$$,但只要求$g$以指数速度消失。
On the Moore-Gibson-Thompson equation with memory with nonconvex kernels
We consider the MGT equation with memory $$\partial_{ttt} u + \alpha \partial_{tt} u - \beta \Delta \partial_{t} u - \gamma\Delta u + \int_{0}^{t}g(s) \Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel $g$, usually adopted in the literature. In the subcritical case $\alpha\beta>\gamma$, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving $g$ and its derivative $g'$, namely, $$g'+\delta g\leq 0,\quad\delta>0,$$ but only asking that $g$ vanishes exponentially fast.