Hamdan Alzahrani, M. Arif, A. Kaushik, M. Rana, H. Aburas
{"title":"利用人工神经网络评价室内空气质量对教师绩效的影响","authors":"Hamdan Alzahrani, M. Arif, A. Kaushik, M. Rana, H. Aburas","doi":"10.1108/jedt-07-2021-0372","DOIUrl":null,"url":null,"abstract":"\nPurpose\nA building's Indoor Air Quality (IAQ) has a direct impact on the health and productivity on its occupants. Understanding the effects of IAQ in educational buildings is essential in both the design and construction phases for decision-makers. The purpose of this paper is to outline the impact air quality has on occupants' performance, especially teachers and students in educational settings.\n\n\nDesign/methodology/approach\nThis study aims to evaluate the effects of IAQ on teachers' performances and to deliver air quality requirements to building information modelling-led school projects. The methodology of the research approach used a quasi-experiment through questionnaire surveys and physical measurements of indoor air parameters to associate correlation and deduction. A technical college building in Saudi Arabia was used for the case study. The study developed an artificial neural network (ANN) model to define and predict relationships between teachers' performance and IAQ.\n\n\nFindings\nThis paper contains a detailed investigation into the impact of IAQ via direct parameters (relative humidity, ventilation rates and carbon dioxide) on teacher performance. Research findings indicated an optimal relative humidity with 65%, ranging between 650 to 750 ppm of CO2, and 0.4 m/s ventilation rate. This ratio is considered optimum for both comfort and performance\n\n\nOriginality/value\nThis paper focuses on teacher performance in Saudi Arabia and used ANN to define and predict the relationship between performance and IAQ. There are few studies that focus on teacher performance in Saudi Arabia and very few that use ANN in data analysis.\n","PeriodicalId":46533,"journal":{"name":"Journal of Engineering Design and Technology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating the effects of indoor air quality on teacher performance using artificial neural network\",\"authors\":\"Hamdan Alzahrani, M. Arif, A. Kaushik, M. Rana, H. Aburas\",\"doi\":\"10.1108/jedt-07-2021-0372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nA building's Indoor Air Quality (IAQ) has a direct impact on the health and productivity on its occupants. Understanding the effects of IAQ in educational buildings is essential in both the design and construction phases for decision-makers. The purpose of this paper is to outline the impact air quality has on occupants' performance, especially teachers and students in educational settings.\\n\\n\\nDesign/methodology/approach\\nThis study aims to evaluate the effects of IAQ on teachers' performances and to deliver air quality requirements to building information modelling-led school projects. The methodology of the research approach used a quasi-experiment through questionnaire surveys and physical measurements of indoor air parameters to associate correlation and deduction. A technical college building in Saudi Arabia was used for the case study. The study developed an artificial neural network (ANN) model to define and predict relationships between teachers' performance and IAQ.\\n\\n\\nFindings\\nThis paper contains a detailed investigation into the impact of IAQ via direct parameters (relative humidity, ventilation rates and carbon dioxide) on teacher performance. Research findings indicated an optimal relative humidity with 65%, ranging between 650 to 750 ppm of CO2, and 0.4 m/s ventilation rate. This ratio is considered optimum for both comfort and performance\\n\\n\\nOriginality/value\\nThis paper focuses on teacher performance in Saudi Arabia and used ANN to define and predict the relationship between performance and IAQ. There are few studies that focus on teacher performance in Saudi Arabia and very few that use ANN in data analysis.\\n\",\"PeriodicalId\":46533,\"journal\":{\"name\":\"Journal of Engineering Design and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jedt-07-2021-0372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jedt-07-2021-0372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating the effects of indoor air quality on teacher performance using artificial neural network
Purpose
A building's Indoor Air Quality (IAQ) has a direct impact on the health and productivity on its occupants. Understanding the effects of IAQ in educational buildings is essential in both the design and construction phases for decision-makers. The purpose of this paper is to outline the impact air quality has on occupants' performance, especially teachers and students in educational settings.
Design/methodology/approach
This study aims to evaluate the effects of IAQ on teachers' performances and to deliver air quality requirements to building information modelling-led school projects. The methodology of the research approach used a quasi-experiment through questionnaire surveys and physical measurements of indoor air parameters to associate correlation and deduction. A technical college building in Saudi Arabia was used for the case study. The study developed an artificial neural network (ANN) model to define and predict relationships between teachers' performance and IAQ.
Findings
This paper contains a detailed investigation into the impact of IAQ via direct parameters (relative humidity, ventilation rates and carbon dioxide) on teacher performance. Research findings indicated an optimal relative humidity with 65%, ranging between 650 to 750 ppm of CO2, and 0.4 m/s ventilation rate. This ratio is considered optimum for both comfort and performance
Originality/value
This paper focuses on teacher performance in Saudi Arabia and used ANN to define and predict the relationship between performance and IAQ. There are few studies that focus on teacher performance in Saudi Arabia and very few that use ANN in data analysis.
期刊介绍:
- Design strategies - Usability and adaptability - Material, component and systems performance - Process control - Alternative and new technologies - Organizational, management and research issues - Human factors - Environmental, quality and health and safety issues - Cost and life cycle issues - Sustainability criteria, indicators, measurement and practices - Risk management - Entrepreneurship Law, regulation and governance - Design, implementing, managing and practicing innovation - Visualization, simulation, information and communication technologies - Education practices, innovation, strategies and policy issues.