线性偏t分布及其性质

Pub Date : 2023-02-23 DOI:10.3390/stats6010024
C. Adcock
{"title":"线性偏t分布及其性质","authors":"C. Adcock","doi":"10.3390/stats6010024","DOIUrl":null,"url":null,"abstract":"The aim of this expository paper is to present the properties of the linear skew-t distribution, which is a specific example of a symmetry modulated-distribution. The skewing function remains the distribution function of Student’s t, but its argument is simpler than that used for the standard skew-t. The linear skew-t offers different insights, for example, different moments and tail behavior, and can be simpler to use for empirical work. It is shown that the distribution may be expressed as a hidden truncation model. The paper describes an extended version of the distribution that is analogous to the extended skew-t. For certain parameter values, the distribution is bimodal. The paper presents expressions for the moments of the distribution and shows that numerical integration methods are required. A multivariate version of the distribution is described. The bivariate version of the distribution may also be bimodal. The distribution is not closed under marginalization, and stochastic ordering is not satisfied. The properties of the distribution are illustrated with numerous examples of the density functions, table of moments and critical values. The results in this paper suggest that the linear skew-t may be useful for some applications, but that it should be used with care for methodological work.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Linear Skew-t Distribution and Its Properties\",\"authors\":\"C. Adcock\",\"doi\":\"10.3390/stats6010024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this expository paper is to present the properties of the linear skew-t distribution, which is a specific example of a symmetry modulated-distribution. The skewing function remains the distribution function of Student’s t, but its argument is simpler than that used for the standard skew-t. The linear skew-t offers different insights, for example, different moments and tail behavior, and can be simpler to use for empirical work. It is shown that the distribution may be expressed as a hidden truncation model. The paper describes an extended version of the distribution that is analogous to the extended skew-t. For certain parameter values, the distribution is bimodal. The paper presents expressions for the moments of the distribution and shows that numerical integration methods are required. A multivariate version of the distribution is described. The bivariate version of the distribution may also be bimodal. The distribution is not closed under marginalization, and stochastic ordering is not satisfied. The properties of the distribution are illustrated with numerous examples of the density functions, table of moments and critical values. The results in this paper suggest that the linear skew-t may be useful for some applications, but that it should be used with care for methodological work.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6010024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇解释性论文的目的是给出线性偏t分布的性质,它是对称调制分布的一个具体例子。偏斜函数仍然是Student的t的分布函数,但它的参数比标准偏斜-t的参数更简单。线性倾斜-t提供了不同的见解,例如,不同的力矩和尾部行为,并且可以更简单地用于实证工作。结果表明,分布可以表示为一个隐藏截断模型。本文描述了分布的一个扩展版本,它类似于扩展的倾斜-t。对于某些参数值,分布是双峰分布。本文给出了分布矩的表达式,并表明需要采用数值积分方法。描述了分布的多变量版本。分布的双变量版本也可以是双峰的。边缘化下的分布是不闭合的,随机排序是不满足的。密度函数、矩表和临界值的许多例子说明了分布的性质。本文的结果表明,线性倾斜-t可能对某些应用有用,但在使用时应注意方法学工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Linear Skew-t Distribution and Its Properties
The aim of this expository paper is to present the properties of the linear skew-t distribution, which is a specific example of a symmetry modulated-distribution. The skewing function remains the distribution function of Student’s t, but its argument is simpler than that used for the standard skew-t. The linear skew-t offers different insights, for example, different moments and tail behavior, and can be simpler to use for empirical work. It is shown that the distribution may be expressed as a hidden truncation model. The paper describes an extended version of the distribution that is analogous to the extended skew-t. For certain parameter values, the distribution is bimodal. The paper presents expressions for the moments of the distribution and shows that numerical integration methods are required. A multivariate version of the distribution is described. The bivariate version of the distribution may also be bimodal. The distribution is not closed under marginalization, and stochastic ordering is not satisfied. The properties of the distribution are illustrated with numerous examples of the density functions, table of moments and critical values. The results in this paper suggest that the linear skew-t may be useful for some applications, but that it should be used with care for methodological work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信