{"title":"一类有缺陷的周期Hamilton-Jacobi方程的齐化","authors":"Y. Achdou, Claude Le Bris","doi":"10.1080/03605302.2023.2238953","DOIUrl":null,"url":null,"abstract":"Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homogenization of some periodic Hamilton-Jacobi equations with defects\",\"authors\":\"Y. Achdou, Claude Le Bris\",\"doi\":\"10.1080/03605302.2023.2238953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2238953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2238953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Homogenization of some periodic Hamilton-Jacobi equations with defects
Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.