一类有缺陷的周期Hamilton-Jacobi方程的齐化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Y. Achdou, Claude Le Bris
{"title":"一类有缺陷的周期Hamilton-Jacobi方程的齐化","authors":"Y. Achdou, Claude Le Bris","doi":"10.1080/03605302.2023.2238953","DOIUrl":null,"url":null,"abstract":"Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homogenization of some periodic Hamilton-Jacobi equations with defects\",\"authors\":\"Y. Achdou, Claude Le Bris\",\"doi\":\"10.1080/03605302.2023.2238953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2238953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2238953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了一类稳态Hamilton-Jacobi方程的齐次化问题,该类方程的哈密顿量是通过在原点附近的一个周期哈密顿量进行扰动得到的。我们证明了极限问题由原点外的哈密顿-雅可比方程组成,该方程具有与周期齐次化中相同的有效哈密顿量,并在原点处补充了跟踪扰动的有效狄利克雷条件。讨论了各种注释和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of some periodic Hamilton-Jacobi equations with defects
Abstract We study homogenization for a class of stationary Hamilton-Jacobi equations in which the Hamiltonian is obtained by perturbing near the origin an otherwise periodic Hamiltonian. We prove that the limiting problem consists of a Hamilton-Jacobi equation outside the origin, with the same effective Hamiltonian as in periodic homogenization, supplemented at the origin with an effective Dirichlet condition that keeps track of the perturbation. Various comments and extensions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信